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Abstract: In the framework of a heater experiment at the Meuse/Haute-Marne rock laboratory, DBE TECHNOLOGY and Dynardo 
performed an analysis of the rock behaviour in response to heating. New approaches describing rock permeability as a function of stress 
and plastic strain were used, and statistical methods for parameter identification were applied. The methods comprise automatic 
sensitivity analysis and optimization algorithms that allow a parameter fitting and an analysis of the importance of individual 
parameters for the general system development. The identification process resulted in a parameter set that allows a good description of 
the rock behaviour while being heated. 
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1. Introduction1 

To study the thermo-hydro-mechanical effects of the 

thermal transient phase on the clay host rock of a deep 

repository, ANDRA (the French National Radioactive 

Waste Management Agency) performs an in-situ 

heating test called TED experiment. This experiment is 

the second one carried out in the Meuse/Haute-Marne 

Underground Research Laboratory focusing on 

determining the thermo-hydro-mechanical behavior of 

the Callovo-Oxfordian claystone. The aim of the TED 

experiment is to measure the temperature, deformation, 

and pore-pressure field evolution around heaters and to 

back-analyze the thermo-hydro-mechanical properties 

of the Callovo-Oxfordian claystone. The TED 

experiment was also designed to study the evolution of 

the damaged zone due to heating. The analyses of the 

TED experiment results will help to calibrate the 
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CAE-based sensitivity analysis, stochastic analysis, parameter 
identification, optimization, thermal-hydraulic-mechanical 
coupled finite element simulation. 

numerical models that will be applied to the French 

disposal cell concept [1]. A detailed description of the 

heater experiment is given in Ref. [2]. One possibility 

to identify the THM parameters of the claystone is to 

perform a series of forward simulations by adjusting 

the THM input parameters until the calculation results 

fit best to the values measured at the different sensor 

locations. Given the large number of sensors to 

consider, and based on experience from former 

experiments at the Meuse/Haute-Marne and Mont Terri 

underground research labs [3-5], doing this fitting 

process manually is a long and laborious task. Thus, an 

automatic parameter identification process has been 

applied, and the results are presented in this paper. 

2. The Heating Experiment 

The test set-up consists of 3 heater boreholes and 21 

instrumented observation boreholes. Each heater is 4 m 

long and generates a thermal power of 1,500 W. The 

distance between the heaters is 2.6 m in order to 

approximate the geometry of the planned disposal cells. 
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For solving coupled THM problems, the following 

balance equations and transport laws are used: 

 Equation of motion and equilibrium (mechanical 

nonlinear analysis); 

 Equation of energy balance (thermal analysis); 

 Equation of fluid-mass balance (hydraulic 

analysis); 

 Fourier’s Law of heat conduction; 

 Darcy’s Law of fluid flow in a porous medium. 

For numerical solution of heat-flow problems, the 

code uses the equation of energy balance and transport 

laws, which are derived from Fourier’s Law of heat 

conduction. The energy balance equation can be 

written in the following differential expression: 

grad qt + qt
v = ρc dT/dt         (1) 

where qt is the heat-flux vector [W/m2], qt
v is the 

volumetric heat-source intensity [W/m3], ρ is the 

density [kg/m3], c is the specific heat at constant 

volume [J/kg·K], T is the temperature [°C] and t is the 

time [s]. Transport of heat is taken into account by heat 

conduction. The dependence between heat flux and 

temperature gradient (Fourier’s Law) for anisotropic 

case can be written in the following form: 

qt = - grad T             (2) 

where λ is the thermal conductivity tensor [W/m·K]. 

The forward coupling to the mechanical stress 

calculation is carried out via the thermal expansion 

coefficient αs. Thermal-strain increments εT associated 

with the free expansion corresponding to temperature 

change ΔT: 

ΔεT = αs ΔT             (3) 

where αs is the coefficient of linear thermal expansion 

[1/K], ΔT is the temperature difference [K], and δ the 

Kronecker delta. For numerical solution of fluid-flow 

problems, the equation of fluid-mass balance and 

Darcy’s law of fluid transport in a porous medium are 

used. The fluid-mass balance equation can be given in 

the following form: 

grad qf + qf
v = d/dt           (4) 

where qf is the specific discharge vector [1/s], qf
v is the 

volumetric fluid source intensity [1/s],  is the 

variation of fluid volume per unit volume of    

porous material due to diffusive fluid mass transport, 

and t is time [s]. The relation between the specific 

discharge vector and the pore pressure is defined by 

Darcy’s law. For the anisotropic case it can be given in 

the form: 

qf = -k/µ(T) grad(Pp – ρf g z)or qf = 

-k ρf g/µ(T) grad(h)       (5) 

where k is the permeability tensor [m2], µ(T) is the 

temperature-dependent fluid viscosity [Pa·s], Pp is the 

pore pressure, ρf is the fluid density [kg/m3], g is the 

gravity acceleration [m·s-2], and h=Pp/gρf+ z is the 

hydraulic head [m]. Single-phase flow is considered in 

the simulation. The anisotropic permeability tensor 

depends on the stress state as well as on the plastic 

strain. 

ki = kσ,i + kε,i for i=x, y, z        (6) 

An exponential relation between intrinsic 

permeability and stress state is introduced for 

permeability parallel to bedding plane kσ,x = kσ,y and 

perpendicular to bedding plane kσ,z as follows: 
pn

z
pyx kkk













0
,0,, 


  

nn

hm
nnz kkk













0

,
,0,, 


     (7) 

where σ0= 1 MPa, k0, p,np, k0, n, nn are parameters, σz is 

vertical stress vertical stress and σm, h=(σx +σy)/2 is the 

mean value of horizontal stresses. Permeability change 

caused by plasticity is considered as linearly dependent 

on the sum of plastic strains in the plane perpendicular 

to the considered direction: 

kε,x = kε (εy
+ + εz

+), kε,x ≤ kε,max 

kε,y = kε (εx
+ + εz

+), kε,y ≤ kε,max     (8) 

kε,z = kε (εx
+ + εy

+), kε,z≤ kε,max 

where εx
+, εy

+, εz
+ are plastic strains in directions x, y, z; 

kε is the permeability, and kε,max is the maximum 

permeability. Changes in the variation of pore pressure 

Pp are related linearly to changes in fluid content ξ, 

volumetric strain εv and temperature T by the following 

constitutive law: 
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where M is the Biot modulus [Pa], α is the Biot 

coefficient [-], and β the undrained thermal coefficient 

[1/K] defined as: 

β = 3 [αs (α – n) + αf, fact αf (T) n]    (10) 

where αs is the linear thermal expansion coefficient for 

grains [1/K], αf(T) is the temperature-dependent linear 

thermal expansion coefficient for fluid [1/K], n is the 

porosity, and αf, fact is the factor of αf(T), which was 

introduced as a parameter for sensitivity analysis and 

calibration that simply allows to consider different 

types of pore fluids. 

Due to the bedding of the Callovo-Oxfordian clay, it 

is very important to take into account the anisotropy of 

elastic mechanical behaviour and hydraulic 

conductivity behaviour in the modelling. In addition, 

with multiPlas [7], we defined a Mohr-Coulomb based 

elasto-plastic behaviour for the rock matrix as well as 

for the bedding plane. The behaviour considers shear 

and tensile failure including softening after the initial 

strength values are violated. The definition of four 

yield surfaces results in a multi-surface plasticity 

definition that is not easy to formulate consistently 

using implicit FEM codes. One of the main advantages 

of multiPlas [7] is the automatic procedure to ensure 

consistent numerical treatment of multi-surface 

plasticity to achieve convergence behaviour as best as 

possible. 

4.3 Initial and Boundary Conditions 

When calibrating complex non-linear 

time-depended problems, the model initialization is 

very important. We covered the impacts of tunnel 

excavation and heater placement on the temperature 

and pore pressure fields by explicitly modelling 

excavation and heater placement. The whole model 

domain is initialized at starting time (t = -605 days) 

with a constant temperature of 21.5 °C, constant 

hydraulic height (438.33 m), and initial anisotropic 

total stress. The boundary conditions for thermal and 

hydraulic analysis were defined at the model surfaces 

as fixed or perfectly insulated. For the mechanical 

analysis, zero displacements were applied normal to 

the surface at the sides as well as at the lower boundary 

of the model. The upper boundary was loaded with a 

pressure that represents the weight of the upper layers. 

Later on, the boundary conditions were adjusted 

during the excavating and drilling of boreholes by 

introducing new boundary conditions on free surfaces 

of excavation caverns and boreholes (measured tunnel 

temperature and zero pore pressure on free surfaces). 

The tunnel and niche excavation was done in 115 steps 

(time -604 ... -234.5 days) by deactivating and 

activating tunnel and lining elements. The same 

procedure was used to simulate the drilling of the three 

heater boreholes where clay was deactivated and heater 

elements activated at the installation times of the 

heaters. We also took into account the influence of the 

two observation boreholes next to the heater boreholes. 

On their longitudinal axes, zero pore pressure was set 

from the time of drilling.  

5. Simulation of the Heater Test 

5.1 Temperature Evolution 

The basic THM simulation carefully modeled the 

experiment including the tunnel excavation, the heater 

boreholes, and all heating phases. The thermal analysis 

does not depend much on hydraulic or mechanical 

processes but is the driving force for all the 

hydro-mechanical processes in the experimental area. 

Therefore, the thermal rock material properties were 

calibrated separately at the beginning to ensure a good 

representation of the temperature evolution in the 

model. 

In Fig. 5, the location of the temperature sensors is 

shown as a top view onto the horizontal x-y-plane. The 

sensors are located in eight observation boreholes at 

different distances to the test drift. The three thick lines 

represent the locations of the heaters. The initial input 

parameters as starting values for the parameter 

identification were taken from laboratory investigations 
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Fig. 5  Location of temperature sensors and heaters (top 
view).  
 

Table 1  Initial and final thermal properties.  

Input parameter 
Initial 
values 

Final 
values 

Density ρ (kg × m-3) 2,378 2,333 
Horizontal thermal 
conductivity 

λx (W × m-1 × K-1) 2.00 2.02 

Vertical thermal 
conductivity 

λz (W × m-1 × K-1) 1.31 1.37 

Specific heat 
capacity 

c (J × kg-1 × K-1) 828 695 

 

on drill core samples and are given in Table 1 [13].  

For comparison, the best design parameter set found 

after 40 simulation runs controlled by optiSLang is 

given in Table 1 as well. It shows that the final values 

are quite close to the initial ones found in the laboratory. 

Fig. 6a shows a comparison of the measured and 

calculated temperature evolutions for three selected 

sensors. The locations of these sensors are marked in 

Fig. 5 with a square. The good fitting is evident.  

In Fig. 6b the differences between measured and 

calculated values are given for the eight sensors located 

at a distance of 14 m from the test drift (reference plane, 

grey line in Fig. 5). The differences are less than 0.8 K. 

This is a sound basis for the following identification of 

the pore water pressure evolution in the experimental 

area. 

5.2 Porewater Pressure Evolution 

After the boundary conditions had been adjusted 

with the help of the initial best guesses for all rock 

 
(a) 

 
(b) 

Fig. 6(a)  Comparison of measured and calculated 
temperature evolutions for three selected sensors, (b) 
differences between measured and calculated values given 
for the eight sensors located in the reference plane at a 
distance of 14 m from the test drift (grey line in Fig. 5). 
 

parameters, the design showed plausible results. This 

design, together with windows of uncertainty of ± 20%, 

was used to perform a sensitivity analysis. The input 

parameters are listed in Tables 2 and 3 (29 uncertain 

parameters in total). For the sensitivity analysis, 80 

designs were generated using optiSLang’s Latin 

Hypercube sampling. The responses of the sensitivity 

analysis are integral and discrete values of pore 

pressures obtained from time history signals at all 

measured points. From each signal, total values of pore 

pressure were used at time 0 and relative values (related 

to time 0) at times 20, 121, 141, 275, 295, 400, 420, 526, 

546 and 597 days (responses are shown in Fig. 7).  
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