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Summary A large number of problems in manufacturing processes, production planning, finance and
engineering design require an understanding of potential sources of variations and quantification of the
effect of variations on product behavior and performance. Traditionally, in engineering problems uncer-
tainties have been formulated only through coarse safety factors. Such methods often lead to overdesigned
products. Furthermore, the deterministic optimization algorithms tend to push an optimized design to-
wards the boundaries of the design space.

This paper reviews theories and methodologies that have been developed to solve optimization prob-
lems under uncertainties. In the first part the paper gives an overview over the state of the art in
stochastic optimization methods such as robust design and reliability-based design optimization.

In addition, global response surface techniques as well as genetic programming in combination with
first order reliability methods in reliability-based optimization are discussed. Two numerical examples
from structural analysis under static and dynamic loading conditions show the applicability of these
concepts. The probabilistic and structural analysis tasks are performed with ANSYS DesignXplorer and
OptiSLang software packages.

Keywords stochastic optimization, robust design, reliability-based design optimization, design for six
sigma, genetic programming, response surfaces, first order reliability methods
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Figure 1: Probability density function fX(x) of
the normal and lognormal distribution.
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Figure 2: Normal distribution fX(x) with lower
and upper specification limit on 2σ and 6σ level.
Robust design (RD) and safety design (SD) (≥
±2σ) depending on choosen limit state function
g(X) ≤ 0, e.g. stress limit state.

1 Introduction

1.1 Challenges on virtual prototyping and multidisciplinary optimization

Methods of multidisciplinary optimization have obtained an increasing importance in the design of engi-
neering problems for improving the design performance and reducing costs. The virtual prototyping is an
interdisciplinary process. Such a multidisciplinary approach requires to run different solvers in parallel
and to handle different types of constraints and objectives. Arbitrary engineering software and complex
non-linear analyses have to be connected. Resulting optimization problems may become very noisy, very
sensitive to design changes or ill-conditioned for mathematical function analysis (e.g. non-differentiable,
non-convex, non-smooth).

During the last years, many challenges on virtual prototyping have occurred. Product life cycles are
expected to last for as little as a few months, and more and more customized products are developed,
e.g. 1700 car models compared to only 900 ten years ago. The engineer’s focus is more and more on
“built-in-quality” and “built-in-reliability”. The products are developed in the shortest amount of time,
and, inspite of that, they have to be safe, reliable and robust. Some markets require optimized product
designs to be robust, e.g. defense, aerospace, jet engine, nuclear power, biomedical, oil industry and other
mission critical tasks.

At the same time, the structural models become increasingly detailed and numerical procedures
become more and more complex. Substantially more precise data is required for the structural analysis.
The optimized designs lead to high imperfection sensitivities and tend to loose robustness. Using a
multidisciplinary optimization method, the deterministic optimum design is frequently pushed to the
design space boundary. The design properties have no room for tolerances or uncertainties. So the
assessment of structural robustness, reliability and safety will be more and more important. Because of
that, an integration of optimization and stochastic structural analysis methods is necessary.

1.2 Design for six sigma and stochastic optimization

Probabilistic analysis typically involves two areas of statistical variability as shown in Table 1. The
first group consists of the uncontrollable uncertainties and tolerances. These include material property
variability, manufacturing process limitations, environmental variability, such as temperature, operating
processes (misuse) and result scatter arising from deterioration. The second group – the controllable
parameters – involves design configurations, geometry, loads, constraints and manufacturing process
settings.
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Property SD/Mean %
Metallic materiales, yield 15
Carbon fiber composites, rupture 17
Metallic shells, buckling strength 14
Junction by screws, rivet, welding 8
Bond insert, axial load 12
Honeycomb, tension 16
Honeycomb, shear, compression 10
Honeycomb, face wrinkling 8
Launch vehicle , thrust 5
Transient loads 50
Thermal loads 7.5
Deployment shock 10
Acoustic loads 40
Vibration loads 20

Table 1: Sources of uncertainties (Klein et al. (1994)) given by standard deviation (SD) and mean value
as shown in Figure 1.

Sigma Percent Probability of Defects per million Defects per million
level variation failure P (f) (short term) (long term)
±1σ 68.26 3.17 · 10−1 317400 697700
±2σ 95.46 4.54 · 10−2 45400 308733
±3σ 99.73 2.7 · 10−3 2700 66803
±4σ 99.9937 6.3 · 10−5 63 6200
±5σ 99.999943 5.7 · 10−7 0.57 233
±6σ 99.9999998 2.0 · 10−9 0.002 3.4

Table 2: Sigma level depending on the variation of the normal distribution, defects per million and asso-
ciated probability of failure P (f). A probability of 3.4 out of 1 million is achieved when the performance
target is 4.5 σ away from the mean value (short term). The additional 1.5 σ (long term) leading to a
total of 6 standard deviations are used as a safety margin to allow for “drift of the mean value” in the
properties and environment which the product can see over its lifetime.

Six Sigma is a quality improvement process to optimize the manufacturing process in a way that it
automatically produces parts conforming to the six sigma quality level, as shown in Figure 2. Motorola
documented more than $16 Billion in savings as a result of their Six Sigma efforts1. Since then, hundreds
of companies around the world have adopted Six Sigma as a way of doing business.

In contrast, Design for Six Sigma optimizes the design itself such that the part conforms to Six Sigma
quality even with variations in manufacturing. Design for Six Sigma is a concept to optimize the design
such that the parts conform with six sigma quality, i.e. quality and reliability are explicit optimization
goals. Robust design is often synonymous to “Design for Six Sigma” or “reliability-based optimization”.
The possible sigma levels start at 1,2 σ (robust design optimization) and go up to 6 σ (reliability-based
design optimization) (Koch et al. (2004)), as shown in Table 2.

Within the stochastic optimization, the statistical variability of the design parameter is considered.
The most general method for solving stochastic optimization problems is the well established Monte Carlo
simulation method. However, the major shortcoming of this approach is its vast need of computational
resources (the number of solver runs required), and these cannot be presumed in general situations.
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1.3 Robust design optimization

Optimized designs within the sigma level ≤ ±2σ are characterized as robust design (RD). The objective
of the robust design optimization (e.g. Hwang et al. (2001); Ben-Tal & Nemirovski (2002); Doltsinis &
Kang (2004)) is to find a design with a minimal variance of the scattering model responses aroung the
mean values of the design parameters (see Byrne & Taguchi (1987); Phadke (1989)).

Other approaches for an evaluation of the design robustness, e.g. the linear approximation of “scatter-
ing” solver responses (see e.g. Abspoel et al. (2001)) or the variance estimation in genetic programming
(see e.g. Pictet et al. (1996); Branke (1998)), independently of given parameter distributions will not be
subject of the following remarks as they are not to be counted to stochastic optimization methods in a
stricter sense.

1.4 Reliability-based optimization

In the reliability-based optimization, the optimization problem can be enhanced by additional stochastic
restrictions ensuring that prescribed probabilities of failure can not be exceeded. Furthermore, the
probability of failure itself can be integrated into the objective function. Frequently, the search for
the optimum by means of deterministic optimization is combined with the calculation of the failure
probability, e.g. using the first- order second-moment analysis (FOSM) (e.g. Melchers (2001)). A more
promising combination may under certain circumstances involve the first and second order reliability
methods (FORM/SORM) (e.g. Choi et al. (2001); Allen et al. (2004); Allen & Maute (2004)).

Within the deterministic optimization, a calculation of the failure probability of individual designs
has to be performed in order to be able to properly evaluate these designs. Therefore, special attention
has to be paid to the cost efficiency of this calculation. As an example, for smooth and well-scaled
objective functions with few continuous design parameters, the deterministic optimization as well as
the determination of the failure probability that is included within the optimization iteration loop may
be performed by means of gradient based programming (e.g. Sequential Quadratic Programming, vgl.
Schittkowski (1985)).

In Kharmanda et al. (2002) a decrease of the numerical expense of these two nested iterations is
attempted by substituting the deterministic objective function as well as the limit state function on
which the point of largest probability density is searched within FORM by a single objective function in
a hybrid design space. However, this leads to an enlargement of the design space for the gradient based
programming.

1.5 Approximation methods

In the reliability-based optimization, frequently approximation function are applied that at the same time
approximate the design space and the space of random parameters by means of a meta-model, e.g. in
Choi et al.; Youn et al. (2004); Yang & Gu (2004); Rais-Rohani & Singh (2004). Successful industrial
applications of these methods can amongst others be found in Youn & Choi (2004).

In Royset & Polak (2004), a linear approximation of the limit state function serves as a constraint of
the optimization problem. An improvement of the optimization result is tempted in Royset et al. (2003)
by taking into account the gradients of the limit state function.

However, in the robust optimization (see Chen et al. (2004); Wilson et al. (2001)) as well, different
approximation models in combination with an appropriate variance determination are used, e.g. global
polynomial approximations and Kriging models. Their use is restricted to problems with few random
variables and few optimization variables (n ≤ 10).

NAFEMS Seminar:
”Optimization in Structural Mechanics“

4

April 27 - 28, 2005
Wiesbaden, Germany



x1

x(  )g

f x(  )X

xg (  ) = 0

x2

� ��

Figure 3: fX(x): joint probability density function, g(x): structural response function, g(x) = 0: limit
state function.

2 Stochastic optimization

2.1 Introduction

2.1.1 Reliability-based design optimization

In reliability-based design optimization, the deterministic optimization problem

f(d1, d2, . . . dnd
) → min

gk(d1, d2, . . . dnd
) = 0; k = 1,me

hl(d1, d2, . . . dnd
) ≥ 0; l = 1,mu

di ∈ [dl, du] ⊂ Rnd

dl ≤ di ≤ du

di = E[Xi]

(1)

with nr random parameters X and nd means of the design parameters d = E[X] is enhanced by additional
mg random restrictions ∫

nr. . .

∫
gj(x)≤0

fX(x)dx− P (X : gj(X) ≤ 0) ≤ 0; j = 1,mg (2)

with the joint probability density function of the basic random variables fX(x) and mg limit state
functions gj(x) ≤ 0 (see Figure 3). The probability of failure in (2) is calculated applying the reliability
analysis.

Furthermore the objective function can be enhanced by additional criteria such as minimization of
the probability of failure P (f)

f(d1, d2, . . . dnd
, P (f)) → min (3)

1source: www.isixsigma.com/library/contentc020729a.asp
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with
P (f) =

∫
nr. . .

∫
gj(x)≤0

fX(x)dx (4)

2.1.2 Robust design optimization

Within the robust design optimization, the objective (1) is enhanced by the requirement to minimize the
variances σ2

Xi

f(d1, d2, . . . dnd
, σ2

X1
, σ2

X2
, . . . σ2

Xnr
) → min (5)

with

σ2
Xi

=
1

M − 1

M∑
k=1

(
xk

i − µXi

)2

2.2 Genetic programming in combination with the first-order reliability method
(FORM)

For a multitude of optimization problems in structural mechanics, the precision of the input data must
be doubted. The deviations from the target values or nominal values can often be reasonably described
by random variables. Especially such problems without any overlapping of design variables and random
variables permit to choose completely different strategies for optimization and stochastic analysis in order
to ably exploit the their advantages.

Genetic programming is reasonably used in cases when the objective function’s and or the restrictions’
dependency on the design parameters is not differentiable or not even continuous. Furthermore, genetics
can yield good results for problems that are characterized by not contiguous areas (“islands”).

Typically, the failure probabilities of well designed systems are small. Therefore, a reliability method
has to be applied that provides these value at a reasonable expense. This can be with good success the
first-order reliability method (FORM) Rackwitz & Fießler (1978) for problems the restrictions of which
(usually including the failure probability in some form) are depending on the stochastic variables in a
differentiable way.

In this context it has to be considered that genetic algorithms generally implement the restrictions in
the form of penalty terms. Thus, the choice of an appropriate penalty method is of a certain importance.

2.3 Response surfaces on design and random space

Normally, the response function g(x) of a structural system is described implicitly, e.g. through an algo-
rithmic procedure within finite element analysis. Alternatively, the original structural response function
can be approximated by a response surface function g̃(x) of a polynomial form (Faravelli (1986); Engelund
& Rackwitz (1992); Rajashekhar & Ellingwod (1993)).

A commonly used method for response value approximation is the regression analysis. Usually, the
approximation function is a first order or second order polynomial (Box & Draper (1987); Myers (1971)).
As an example in the (n = 2)-dimensional case, k-responses (k = 1, ...,m) will be approximated using a
least square quadratic polynomial in the following form:

g̃k(x) = β1x1k + β2x2k + β11x
2
1k + β22x

2
2k + 2β12x1kx2k + εk (6)

Herein the term εk represents the approximation errors. The approximate coefficients β can be calculated
using the least square postulate

S =
m∑

k=1

ε2k = εT ε → min

One of the major advantages of the response surface method lies in its potential to selectively determine
the number of structural analyses for each support point. This is especially helpful if some overall
knowledge on the system behavior - particularly near to the failure region - is a priori available. By such
means the computational effort can be substantially reduced.
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Figure 4: Turbine blade with rotational velocity and cycle fatique life.

Hence, approximations become important which can be based e.g. on the response surface method.
Unfortunately, the global approximation schemes widely used in the application of the response surface
method can be quite misleading due to the lack of information in certain regions of the random variable
space. It is therefore required to avoid such undesirable interpolation errors at reasonable computational
effort.

3 Numerical examples

3.1 Robust optimization of cycle fatique life

An example serves to demonstrate the applicability of the global response surface method. The com-
putational probabilistic and structural analysis tasks were performed with the software package ANSYS
DesignXplorer.

The DesignXplorer solutions provide the capability to create a robust design optimization by permit-
ting to define both design variables and uncertainty variables, and then to optimize a set of reliability
aims for quantities such as fatigue life, stress, or deflection. DesignXplorer, which is based on Design of
Experiments (DOE), works from within the Workbench environment to perform DOE analyses of any
Workbench simulation, including those with CAD parameters.

The mechanical system is a turbine blade, as shown in Fig. 4, subjected to rotational velocity. The
initial design is a minimal fatique life of 3368 cycles. It is assumed that the tangential and axial leaning
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Figure 5: Turbine blade with random variables
tangential and axial leaning and the design pa-
rameter fillet radius.

Figure 6: Probability density function of the
fatique life response.

Figure 7: Probability density function of the
tangential leaning.

Figure 8: Probability density function of the
axial leaning.
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Figure 9: Example of the postprocessing of the robust design optimization using ANSYS DesignXplorer.

are independent Gaussian random variables with statistics given in Figure 5.
The number of required Design of Experiments (finite element solver runs) amounts 15. The results

of the robust design optimization is an filled radius of 0.2505 with life minimum value of 1006 cycles. The
corresponding failure probability (see Figure 9) is equal to 1.35 · 10−3 and the sigma level is -3.

3.2 Stochastic optimization of a dynamic structure

The aim of the classical optimization problem for structural elements is to minimize the mass while
observing deformation or strength restrictions. The mass of the displayed simple beam with rectangular

Figure 10: Beam with rectangular cross section

cross section (d, h) subjected to deadload and a harmonic load F (t) shall be minimized. The following

NAFEMS Seminar:
”Optimization in Structural Mechanics“

9

April 27 - 28, 2005
Wiesbaden, Germany



Figure 11: Deterministic objective and feasible de-
sign space.

Figure 12: Failure probability depending on h and
w.

restrictions hold:

• the central deflection wg due to deadload is smaller than 5mm.

• the additional central deflection wd due to the dynamic load F (t) is smaller than 10mm

The computational probabilistic and multidisciplinary analysis tasks were done with the software
package OptiSLang (Bucher et al. (2001)).

The objective function (i.e. the cross section area) and the admissible area are displayed in Figure
11 for assumed values of F0 = 20 kN , ω = 60 rad/s, E = 3 · 1010 N/m2, ρ = 2500 kg/m3, L = 10 m and
g = 9.81 m/s2 This figure shows that two separate admissible areas exist. A gradient based optimizer
generally encounters difficulties to override the area boundaries in order to find the global optimum.

Therefore, the use of genetic optimization methods seems promising. Furthermore, in many applica-
tion cases – especially concerning structural dynamics – the characterizing parameters are afflicted with
stochastic uncertainties. In the present example it is assumed that the dynamic load amplitude F0 and
the excitation angular frequency ω are random variables with gaussian distribution. The mean values
correspond to the aforementioned nominal values, and both variational coefficients have been assumed to
be 10%. This yields that the restriction from the dynamic load can only be met with a certain probability
< 1. Fig. 12 displays the probability of violation of the dynamic restriction (i.e. the conditional failure
probability P (F|w, h)) as a function of the design parameters w und h.

The subsequent optimization was started with the additional restriction that the conditional failure
probability be < 1%. In the framework of genetics, designs with a higher failure probability were punished
by a penalty term S the value of which is independent from P (F). Hence, the objective function writes

L = h · w + SH[P (F)− 0.01] (7)

In this equation H[.] designates the Heavyside function. The penalty parameter S has been assumed as
100. A genetics run with 30 generation with 50 individuals each yielded the following best individual:
h = 0.90617, w = 0.78035. The failure probability in this case was 0.38%, which is significantly below the
threshold of 1%. Fig. 13 illustrates the progression of the genetic algorithm by displaying the populations
of the first, the tenth, and the 20th generation. The concentration on areas with acceptable failure
probability is well distinguishable.
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Figure 13: Evolution of the population in genetics

4 Concluding Remarks

Stochastic optimization can provide multiple benefits. It permits the identification of those design param-
eters that are critical for the achievement of a certain performance characteristic. A proper adjustment of
the thus identified parameters to hit the target performance is supported. This can significantly reduce
product costs.

The effect of variations on the product behaviour and performance can be quantified. Moreover,
stochastic optimization can lead to a deeper understanding of the potential sources of variations. Hence,
a minimization of the effect of variations (noise) is made possible, and appropriate steps to desensitize the
design to these variations can be determined. Consequently, more robust and affordable product designs
can be achieved.

In the framework of quality inspection, cost-effectiveness is increased as the inspection can be focused
on the parameters that have been determined as critical for the performance.
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