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Abstract 

There exist many examples for optimization in CAE covering a broad range 
and also combining different physical disciplines. Goals are for example the 
reduction of weight and/or the increase of efficiency. Often these optimizations 
tend towards optimized designs with a lower safety margin. Therefore proving 
the robustness of the design is becoming increasingly important. Typically 
methods that are applied for checking the robustness of designs are robustness 
evaluations or reliability analysis. These analyses then also include the 
scattering behavior of input parameters. The combination of these techniques 
leads to the framework of CAE based Robust Design Optimization.  

Catastrophe theory originated as a special branch of dynamical systems theory 
by the French mathematician Rene Thom in the 1960s. Catastrophes are 
bifurcations between different equilibria. Catastrophe theory studies and 
classifies phenomena characterized by sudden shift in the behavior caused by 
small changes for the basic parameters.  

These sudden changes are also well known in real world system applications, 
however the underlying fundamental parameters are often not that evident nor 
is it clear how to translate it into simulations for virtual prototyping. 

There are different classifications of the catastrophes based on the parameters 
of the potential functions involved, for example the seven elementary types of 
catastrophes described by Thom  (Thom 1989) or the ADE classification by 
Arnold (Arnold 1992).  

As parametric robust design optimization also studies the variation of input 
parameters and their influence on the equilibrium of the target function, the 
idea of this paper is to study the elementary functions of catastrophe theory like 
folding, cusp or swallowtail by robust design optimization techniques, to gain 
deeper insights into system behavior combining robust design optimization and 
catastrophe theory. 

In catastrophe theory the input variables are distinguished between control 
variables and state variables. In our examination we found it very useful to 
handle the control variables as the input parameters for the RDO analysis and 
to use the state variables to construct signals (like for example time-series, 
operating lines, characteristic curves used in this paper as functions of one 
variable) and to examine for examples the number of minima of these signals. 
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Typically the number of minima changes at the bifurcation set. With that 
approach we are able to classify the different domains in control space. Also 
the spatial difference of the extrema along a signal is a useful indicator that can 
be selected as a robustness criteria that is changing smoothly to zero, before the 
sudden change happens. 

 

1. Robust Design Optimization 
CAE-based optimization is well established in engineering. With the increase 
of parametric models and new technologies there is an increase of feasible 
designs and there are many parametric optimization techniques available. For 
an optimization at least one goal needs to be defined. This goal can be for 
example the reduction of weight or the increase in performance. In the simplest 
case the variation of a single parameter can lead to an optimization. In 
parametric optimization we are searching for minima of at least one function f, 
dependent on a set of m input parameters: 
 

𝑓𝑓 = 𝑓𝑓 ( 𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑚𝑚) 
 
For the minimum it is sufficient that the first derivative f’ = 0 and the second 
derivative f’’ > 0. In catastrophe theory the focus is on areas where also f’’ = 0, 
as this is the area of the bifurcations.  
 
As target functions often still are flexible during the early phases of the 
development process and with regards to try to understand the design space it 
is more relevant to study the relations between the input variables 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑚𝑚 
and the output variables 𝑦𝑦1,𝑦𝑦2, … , 𝑦𝑦𝑙𝑙. 
  
Real-world applications usually depend on many – often conflicting - 
parameters, filtering the most important ones is a critical task. This is usually 
done first in a sensitivity analysis, before starting with the optimization.  
Global sensitivity analysis (Saltelli et al. 2008) that are using DOE (Design of 
Experiments) approaches to scan the design space have shown to be very 
efficient, especially if using the latin hypercube sampling for many input 
parameters (Most et al. 2011).  
 
The sensitivity analysis is not only enabling to scan the design space but it also 
enables to quantify the influence of input variables with respect to output 
variables, fields. The coefficient of prognosis (CoP) has proven to be a very 
good quantification of these influences in many real world applications (Most 
et al. 2011). The CoP reaches far beyond best fitting towards high 
predictability, enabling the Meta model of Optimal Prognosis (MOP).  
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For our application to catastrophe theory it is important to note that the output 
can be also not only variables but also fields. This is the case for example, 
when the output is a signal. Furthermore the output can be derived quantities of 
the signal, like the number of peaks in a certain range.    
 
A product should of course not only be optimal under one possible set of 
parameter realizations. It also has to function with sufficient reliability under 
scattering environmental conditions. In the virtual world we can proof that e.g. 
with a stochastic analysis, which leads to CAE-based robustness evaluation. If 
CAE-based optimization and robustness evaluation is combined, we are 
entering the area of Robust Design Optimization (RDO) which is also called 
Design for Six Sigma (DFSS) or just Robust Design (RD). 
 
The main idea behind that methodology is that uncertainties are considered in 
the design process. These uncertainties may have different sources like 
tolerances of the geometrical dimensions and material properties caused by 
production or by deterioration. Some of these uncertainties may have a 
significant impact to the design characteristics which has to be considered in 
the design optimization procedure. 
 
While for the optimization the variation of one parameter may lead to an 
“improved” result, the task in RDO is much more challenging: we have to take 
care as reasonable as possible that no important variable has been neglected.  
 
Two main approaches for RDO are the variance and the reliability based 
robustness evaluation. Today, the majority of RDO approaches uses variance-
based robustness measures in order to minimize the variation of a response 
with or without constraining the mean, which is known as Taguchi approach, 
or to reach a certain level of safety quantified by the safety margin or sigma 
levels, where Design for Six Sigma is one possible concept. 
 
In the framework of variance based RDO not only to target for designs with 
low standard deviation is of interest, but it is of importance also to consider a 
sufficient safety margin to failure or operation limits (Most et al. 2015). As a 
consequence the proof of a sufficient safety margin to failure and operational 
limits should be the primary goal of RDO in virtual prototyping. In case of 
high requirements with respect to the safety level like in Design for Six Sigma 
a final reliability proof should be considered. 
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Figure 1: Reliability analysis as multi-dimensional integration of the probability density of the 
inputs

uncertainties over the failure domain (left) and integration by Monte Carlo Simulation (right)

Within the reliability method the probability of reaching a failure limit is 
obtained by an integration of the probability density of the uncertainties in the 
failure domain. One well-known method is the Monte Carlo Simulation, which 
can be applied independently of the model non-linearity and the number of 
input parameters. This method is very robust and can detect several failure 
regions with highly non-linear dependencies. Unfortunately, it requires an 
extremely large number of solver runs to proof rare events. 

Therefore, more advanced sampling strategies have been developed like 
Directional Sampling, where the domain of input variables is scanned by a line 
search in different directions, or Importance Sampling, where the sampling 
density is adapted in order to cover the failure domain sufficiently and to 
obtain more accurate probability estimates with much less solver calls. Other 
methods like the First or Second Order Reliability Method are still more 
efficient than the sampling methods by approximating the boundary between 
the safe and the failure domain, the so-called limit state. In contrast to a global 
low order approximation of the whole response, the approximation of the limit 
state around the most probable failure point is much more accurate. 
Nevertheless, only one dominant failure point can be found and evaluated. A 
good overview of these “classical” methods is given in (Bucher 2009). 
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2. Catastrophe Theory 
Catastrophes are bifurcations between different equilibria (including the 
possibility of no equilibria). Catastrophe theory studies and classifies 
phenomena characterized by sudden shift in the behavior caused by small 
changes for the basic parameters. The input parameters are separated into state 
variables and control parameters. It is the small change of the control 
parameters that can have a large effect on the stability of the systems. A simple 
case is the elementary catastrophe of the fold: 

𝑦𝑦 = 𝑥𝑥3 + 𝑢𝑢𝑥𝑥 

x is the state variable and u is the control variable. Differentiating y(x): 

𝑦𝑦′ = 3𝑥𝑥2 + 𝑢𝑢 

𝑦𝑦′′ = 6𝑥𝑥 

We see that the function y(x) has for negative u a minimum at  

𝑥𝑥 =  �−𝑢𝑢/3 

and no extremum at all for positive u.  

Assuming for negative u we have a generic stable system with this equilibrium 
at the minima, this system will change in an abrupt way if u crosses to positive 
values.  

The theorem of Thom (Thom 1989) about the seven (not counting Morse 
function 𝑥𝑥2 as this simple one has no co-dimension) elementary catastrophes 
states that: 

Any smooth function f : ℝ𝑛𝑛  →  ℝ  , having a critical point at the origin, and 
having co-dimension ≤  4, is right equivalent (up to sign) to one of the 
following: 

Table 1: The elementary catastrophes 
(Morse) 𝑥𝑥2 
Fold 𝑥𝑥3 + 𝑢𝑢𝑥𝑥 
Cusp 𝑥𝑥4 + 𝑢𝑢𝑥𝑥2 + 𝑣𝑣𝑥𝑥 
Swallowtail 𝑥𝑥5 + 𝑢𝑢𝑥𝑥3 + 𝑣𝑣𝑥𝑥2 + 𝑤𝑤𝑥𝑥 
Butterfly 𝑥𝑥6 + 𝑡𝑡𝑥𝑥4 + 𝑢𝑢𝑥𝑥3 + 𝑣𝑣𝑥𝑥2 + 𝑤𝑤𝑥𝑥 
Elliptic Umbilic 𝑥𝑥3 − 𝑥𝑥𝑦𝑦2 + 𝑤𝑤(𝑥𝑥2 + 𝑦𝑦2) + 𝑢𝑢𝑥𝑥 + 𝑣𝑣𝑦𝑦 
Hyperbolic Umbilic 𝑥𝑥3 + 𝑦𝑦3 + 𝑤𝑤𝑥𝑥𝑦𝑦 + 𝑢𝑢𝑥𝑥 + 𝑣𝑣𝑦𝑦 
Parabolic Umbilic 𝑦𝑦4 + 𝑥𝑥2𝑦𝑦 + 𝑤𝑤𝑥𝑥2 + 𝑡𝑡𝑦𝑦2 + 𝑢𝑢𝑥𝑥 + 𝑣𝑣𝑦𝑦 

 

 

© NAFEMS 2017 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2017 Stockholm, Sweden | 11-14 June 2017



Here t,u,v, w are control variables, x and y are state variables. 

For any elementary catastrophe the function described with these control 
variables –the unfolding - is the most general description around the origin. 
There are no additional control parameters needed for the description of this 
elementary catastrophe. As we seek to assure such a completeness of the 
important input variables in RDO it is worthwhile to consider it here a little bit 
more in detail. This completeness of the unfolding is also known as structural 
stability. 

Consider as an example the fold bifurcation 𝑥𝑥2 + 𝑢𝑢 = 0 already discussed 
above, but now studying the effects of some small perturbation 𝜀𝜀

𝑥𝑥2 + 𝑢𝑢 +  𝜀𝜀 = 0 

This only shifts the bifurcation point from 𝑢𝑢 = 0 to 𝑢𝑢 =  −𝜀𝜀, but the structure 
of the bifurcation remains the same.

Now consider the pitchfork bifurcation 𝑥𝑥3 + 𝑢𝑢𝑥𝑥 = 0. This equation can be 
derived from the cusp, but missing one control parameter v, so this is not an 
unfolded bifurcation set. If we now add some small perturbation: 

𝑥𝑥3 + 𝑢𝑢𝑥𝑥 + 𝜀𝜀 = 0, 

we see that the pitchfork separates into two separate branches (Figure 2),
therefore the pitchfork bifurcation is not structurally stable!  

Figure 2: Pitchfork bifurcation with 𝜀𝜀 = 0 (left image) and effect of 𝜀𝜀 > 0 (right image)

So the generic approach to understand the bifurcation set of the possible design 
space is to reach for a minimal set of control parameters so that we have 
structural stability of the bifurcation set. If we have for example to less control 
parameters we may not be aware of whole classes of different solutions.   

In this paper we will focus the study of the fold, cusp, swallow tail and 
butterfly with the means of RDO. 

The intension is to work out generic RDO approaches that can be applied in 
more complicated situations to detect system changes. This will be addressed 
in the next chapter.
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Next we discuss the cusp: 

𝑦𝑦 = 𝑥𝑥4 + 𝑢𝑢𝑥𝑥2 + 𝑣𝑣 

The cusp has the equilibrium set M

4𝑥𝑥3 + 2𝑢𝑢𝑥𝑥 + 𝑣𝑣 = 0 

The set of singularities is the subset of M with:

12𝑥𝑥2 + 2𝑢𝑢 = 0 

Eliminating x from the two equations we get:

8𝑢𝑢3 + 27𝑣𝑣2 = 0 

This bifurcation set, the cusp (cmp Figure 3), is known for a lot of real world 
examples, like caustics in a coffee cup or for civil engineering the behavior of 
the maximum load for small deviations from symmetry if applying a load force 
to the euler arch (Poston et al. 1998). 

Figure 3: The cusp

The potential of the swallow tail is:

𝑉𝑉(𝑥𝑥) = 𝑥𝑥5 + 𝑢𝑢𝑥𝑥3 + 𝑣𝑣𝑥𝑥2 +𝑤𝑤𝑥𝑥 

With three control parameters u,v and w. 

The equilibrium hyper surface M is described by:

5𝑥𝑥4 + 3𝑢𝑢𝑥𝑥2 + 2𝑣𝑣𝑥𝑥 + 𝑤𝑤 = 0 

And the singularity subset B of M: 

20𝑥𝑥3 + 6𝑢𝑢𝑥𝑥 + 2𝑣𝑣 =  0 

From the last two equations it is possible to eliminate x, however for the study 
of the quantitative behavior of B it is favorable to consider slices of B with 
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constant values 𝑢𝑢 within the control space C (spanned by u,v and w). If we 
consider a surface 𝐶𝐶𝑢𝑢 with constant u and 𝐵𝐵𝑢𝑢 the intersection of B with 𝐶𝐶𝑢𝑢 a 
curve discussion of 𝐵𝐵𝑢𝑢 (Saunders 1980) leads to two different cases u > 0 and u 
< 0 (Figure 4). The figure for u < 0 leads to the name swallow tail.

Figure 4: The bifurcation set of the swallow tail catastrophe function in control space (u, v, w)

Similar for the elementary catastrophe named butterfly:

𝑉𝑉(𝑥𝑥) = 𝑥𝑥6 + 𝑡𝑡𝑥𝑥4 +  𝑢𝑢𝑥𝑥3 + 𝑣𝑣𝑥𝑥2 +𝑤𝑤𝑥𝑥 

The equilibrium hyper surface M is described by:

6𝑥𝑥5 + 4𝑡𝑡𝑥𝑥3 + 3𝑢𝑢𝑥𝑥2 + 2𝑣𝑣𝑥𝑥 + 𝑤𝑤 = 0 

And the singularity subset B of M: 

30𝑥𝑥4 + 12𝑡𝑡𝑥𝑥2 + 6𝑢𝑢𝑥𝑥 + 2𝑣𝑣 =  0 

The usual approach is to consider subsets of B with constant t and u. Especially 
for u = 0 and for negative t the characteristic bifurcation subset shown in 
(Figure 5) shows up.  

                                                   

Figure 5: The bifurcation set of the butterfly catastrophe function in sub space (w, v) for u=0, 
t<0 
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3. Some applications of RDO to Catastrophe Theory 
In the following we used the software optiSLang and the methods described in 
(Dynardo 2016) to study the four elementary catastrophes fold, cusp, swallow 
tail and butterfly with RDO techniques. 

The fold: 

The results of a simple sensitivity analysis are shown in Figure 6:  

                                    

Figure 6: The MOP generated from a sensitivity analysis of the fold shows that for negative 
constant u, we have a minima and a maxima. 

We see directly the bifurcation leading for negative u to a minima and a 
maxima. Of course this extrema can be followed up in the optimization, like 
for example in Figure 7 we show the results of a Simplex optimization keeping 
constant u =  −2: 

 

Figure 7: Optimization run using the Simplex optimization algorithm for constant 𝑢𝑢 =  −2 

We are more interested to develop methods that help to detect critical points 
like the one at x = 0, u = 0 already when approaching this point. For this we 
take the following approach: for constant u we consider f(x) as a signal. This 

© NAFEMS 2017 REPRODUCTION AND REDISTRIBUTION PROHIBITED www.nafems.org

Presented at the NAFEMS World Congress 2017 Stockholm, Sweden | 11-14 June 2017



signal has for negative u a minima and a maxima. These two extrema coincide 
at u = 0. So we take the distance between the minima and the maxima of the 
signal as a measure for the robustness. Figure 8 shows how the signal and some 
derived responses are defined.  

 

Figure 8: Definition of signals and derived values 

Figure 9 shows the result for the output variable diff_x_peaks (the difference in 
x between the minima and the maxima) that coming from negative u goes to 
zero at u = 0.

                                          

Figure 9: Difference between the extrema as a function of u.

This approach can be generalized to quite arbitrary signals having many 
extrema and therefore used as a generic approach in studying signals.

The cusp:

For this elementary catastrophe function the bifurcation set, the cusp, is where 
the functions change from one to two minima (or the other way round). This 
can be directly seen from the results of the sensitivity analysis shown in Figure 
10 for v = 0, that is the path directly through the top of the cusp. 
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Figure 10: Metamodel of the cusp with v = 0 

We see that for the negative constant u there are two minima. 

Setting the bifurcation set itself as the limit state, we can use direct robustness 
evaluations to show the different areas in control space: 

 

Figure 11: Robustness Analysis of the cusp 

We take the region with two minima as the safe domain. For this purpose we 
used the cusp bifurcation set to describe the limit state in an analytic way as a 
function of u and v.  In a more generic approach we can take the number of 
minimal peaks for the limit state to detect the border lines. For this approach 
we used the directional sampling reliability method. The result is shown in 
Figure 12: 

                                                               

Figure 12: Directional sampling used to detect the cusp 
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The swallow tail: 

We continue this path of distinguishing the different regions by their number of 
peaks. Figure 13 show an anthill plot in 3D control space, using the colour for 
the different number of peaks.    

                               
Figure 13: Three dimensional anthill plot, different colour is used for a different number of 

peaks 

If we take a two-dimensional sub space, with a constant negative u, the 
swallow tail becomes more evident: 

                                               
Figure 14: Anthill plot of the swallow tail regions, selecting five designs 

The selected five designs are shown in figure 15 (green: no minima, blue: one, 
red: two)  
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Figure 15: The five designs selected in Figure 14 

 

The butterfly: 

The control parameter space is four dimensional. Checking the design points 
directly for the minimum number of peaks, we can present the results in a 5D 
cloud plot, using here u, v, t as spatial coordinates, the number of minima is 
coloured and w is associated to the size representation of the design point. This 
leads to Figure 16: 

                                             
 Figure 16: Cloud plot of design points, the red points belong to signals with three minima 

This presentation techniques can give some hints, but it is also useful to look 
for appropriate sub space as for example in the classical discussion with 𝑢𝑢 =
0, 𝑡𝑡 < 0 we can use for example again the directional sampling to detect the 
different bifurcation sets, as for example in Figure 17 we have defined as the 
safe region a region where there is only one minima: 
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 Figure 17: Directional sampling for t < 0, u= 0 

So the number of minima from the signals show again to be a valuable output 
parameter for distinguishing the different domains where the border is the 
bifurcation set.                                                                                                                                                    

4. Physical Applications  
We apply the RDO techniques to two standard examples, one from optics and 
one from structural mechanics. These examples are discussed in many of the 
textbooks of catastrophe theory (Saunders 1980; chapter 5). At least to our 
knowledge this is the first time that RDO techniques are applied to these 
examples from catastrophe theory. Still the curves that are treated as signals are 
derived from analytical functions and we like to extend this approach in the 
near future to signals derived from CAE simulations and/or measurements. 

Optics 

Caustics are surfaces, points where the rays are concentrated and focused. This 
concentration leads to high intensities (the name caustic itself is derived from 
the greek word for burned: καυστός) 

For example the reflection of the sunlight in automobile headlights by their 
reflectors can cause severe heat problems inside the headlights. Sensitivity 
analysis with thermo-mechanical CAE simulations are used to study these 
influences. It may be quite useful, for example to reduce the number of 
necessary simulation runs, if the caustics are known. This can be achieved with 
RDO techniques for example defining the caustic as the limit state function. 

Berry showed that caustics are bifurcation sets (Berry 1976). As caustics are in 
general surfaces in ℝ3 there are up to 3 control variables. Therefore structural 
stable caustics will show similarity to fold, cusp, swallow tail and to elliptic or 
hyperbolic umbilic. 
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A caustic that can be easily seen in a nearly full cup of coffee caused by 
sunlight is shown in Figure 18 a). Figure 18 b) shows the cusp like form of the 
caustic by using ray tracing.

Figure 18: Example of a cusp like caustic in a nearly full coffee cup (Saunders, 1980)

Figure 19: A ray from a distance d reflected by Q to P

If we calculate the length of the way from a distance d reflected by Q to any 
point P(x,y), according to Figure 19: 

𝑓𝑓(𝑥𝑥, 𝑦𝑦,𝜃𝜃) = 𝑑𝑑 + 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 + �(𝑥𝑥 − 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃)2 + (𝑦𝑦 − 𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃)2

We can use for the light rays Fermat’s principle f’ = 0, and the bifurcation set, 
the caustic, can be again studied by analysing the different numbers of extrema. 
In this case, 𝜃𝜃 is the state variable and x and y are the control parameters. The
results are shown in Figure 20, clearly showing the cusp like structure. 
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Figure 20: Anthill Plot from sensitivity analysis with color coding for the different number of 
extrema (left) and directional sampling with the number of extrema <= 1 as a limit state 

function (right) for detecting the cusp like caustic

Structural Mechanics

Structural Mechanics has a long history in studying stability, especially the 
examples of Euler, some published already in the year 1744, are examples well 
known in civil engineering. We take as an example the Euler truss shown in 
Figure 21 (length 1 for each bar).  

Figure 21: The Euler truss 

The potential energy is the sum of the three components: spring energy with 
Young’s modulus 𝜇𝜇, energy due to the load force 𝛼𝛼 on the top, and the energy 
from the displacements by the horizontal forces 𝛽𝛽: 

𝑉𝑉(𝜃𝜃) = 2𝜇𝜇𝜃𝜃2 + 𝛼𝛼 𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃 − 2𝛽𝛽(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃)

For 𝛼𝛼 = 0 the equilibrium condition 𝑉𝑉′(𝜃𝜃) = 0 leads to
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𝛽𝛽 𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃 = 2𝜇𝜇𝜃𝜃 

For 𝛽𝛽 < 2𝜇𝜇 the only solution is 𝜃𝜃 = 0, while for 𝛽𝛽 > 2𝜇𝜇 there are two 
additional solutions, one with positive 𝜃𝜃 and one with negative. This is related 
to the effect, that until 𝛽𝛽 exceeds 2𝜇𝜇 the truss remains on the ground. 

For small values of 𝛽𝛽 − 2𝜇𝜇 and 𝛼𝛼 it can be shown that the potential has the 
form of the cusp, essentially with the control parameters (𝛽𝛽 − 2 𝜇𝜇) and 𝛼𝛼 and 
there is a critical force, where the truss will have a sudden equilibrium change 
being overloaded (Saunders 1980): 

𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
10

3 √𝜇𝜇
  (𝛽𝛽 − 2𝜇𝜇)

3
2 

In our sensitivity analysis we used 𝛽𝛽 − 2𝜇𝜇 as one parameter (parameter b_2m 
in Figure 22), 𝜇𝜇 as another parameter, and 𝛽𝛽 as a dependent parameter. Results 
of the sensitivity analysis for small and larger ranges for 𝛼𝛼 are shown. Again 
the curves 𝑉𝑉(𝜃𝜃) are simply differentiated by their number of extrema. We see 
from the left picture that for a small range of 𝛼𝛼 the critical force 𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is a 
function increasing with 𝛽𝛽 − 2𝜇𝜇, however for a larger range (right picture) 
other characteristics appear. The approach of using the number of extrema for 
the limit state function is also possible for the larger range to analyse the 
critical force as a function of 𝛽𝛽 and 𝜇𝜇. 
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Figure 22: Sensitivity analysis with smaller (left) and larger range (right) of the force 𝛼𝛼  

 

5. Conclusions and Outlook 
In this paper we have concentrated to study some of the elementary functions 
of catastrophe theory with RDO techniques. The intention was to start to 
provide some background and a basic framework that we can use to analyse 
real world bifurcation scenarios. Even though many real world examples, for 
example a large range of caustics, can be covered by the elementary 
catastrophes, many other real world examples will also need the extension of 
this framework to higher dimensions. Also having more than one state variable 
will lead naturally to approaches including random field techniques.  

There are many new approaches imaginable, like for example systematic 
studies of the design space searching for bifurcation points, to look for new 
solutions or studies for stabilizing the product by defining some critical area of 
the bifurcation set as limit state and to demand some distance of the product in 
design space from this limit state.  Applying reliability methods from RDO to 
the approach of structural stability of catastrophe theory can eventually lead to 
structural reliability. 
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