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Summary: 
 
The speed of product innovation and the rising requirements for product optimization demands more 
than ever CAE-based product development and CAE-based product optimization. Here CAE-based 
Robust Design Optimization (RDO) is the key technology to optimize product performance while at the 
same time proving the quality requirements of product reliability and robustness.  
Looking to the obvious necessity and the possible benefits of CAE-based Robust Design Optimization 
in virtual prototyping, the fact that still only a rare number of publication about successful applications 
for daily use exist may surprise. Is CAE-based RDO seen to be a luxury? Or if not, where are the 
challenges and bottlenecks for implementation at a daily base of virtual product development. 
 
The paper discussed some challenges of introducing CAE-based RDO into virtual prototyping as well 
introduced the main algorithmic parts of and successful RDO workflow. After discussing a lot about 
challenges, necessary amount of input and verification of course after a successful RDO flow is 
implemented in virtual prototyping the benefits in time to market, resulting product robustness and 
reliability and cost effective product development are huge, documented with some industrial 
applications examples. 
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1 Introduction 
Due to a highly competitive market, the development cycles of increasingly complex structures have to 
be constantly reduced while the demand regarding performance, cost and safety is rising. The 
development of innovative, high quality products within a short time frame which are able to succeed 
in competitive markets is only possible by using CAE-based virtual prototyping. Herein one of the 
greatest challenges is the rising number of numerical simulation of large test and analysis programs 
including CAE-based optimization and CAE-based stochastic analysis while reducing the number of 
hardware tests. Looking to the obvious necessity of CAE-based Robust Design Optimization in virtual 
prototyping, the fact that still only a rare number of publication about successful applications for daily 
use exist may surprise. Is the CAE-based RDO seen to be a luxury? Or if not, where are the 
bottlenecks at implementation. In the paper we discuss the status of application at industrial examples 
including the challenges and possible barriers or bottle necks.  
 
CAE-based optimization has a long tradition in engineering. Goal of optimization is often the reduction 
of material consumption while pushing the design performance to the boundaries of allowable 
stresses, deformations or other critical design responses. At the same time safety margins are asked 
to be reduced and products should be cost efficient and not over engineered. Of course a product 
should not only be optimal under one possible set of parameter realizations. It also has to function with 
sufficient reliability under scattering environmental conditions. In the virtual world we can proof that 
e.g. with a stochastic analysis, which leads to CAE-based robustness evaluation. If CAE-based 
optimization and robustness evaluation is combined, we are entering the area of Robust Design 
Optimization (RDO) which is also called Design for Six Sigma (DFSS) or just Robust Design (RD). 
The main idea behind that methodology is that uncertainties are considered in the design process. 
These uncertainties may have different sources like, in the loading conditions, tolerances of the 
geometrical dimensions and material properties caused by production or deterioration. Some of these 
uncertainties may have a significant impact to the design performance which has to be considered in 
the design optimization procedure. 
Before entering the introduction of the different algorithmic parts of a RDO workflow we would like to 
point out some main challenges when introducing RDO into virtual prototyping. 
 

2 Challenges for introducing RDO in virtual prototyping  
 

2.1 RDO is not just a small extension of an optimization workflow 

Often, in marketing or scientific publications the RDO task is simplified by assuming that the 
robustness space is a subspace of the optimization space defined by the optimization parameters. 
The suggested RDO strategies based on this simplification allow recycling CAE solver runs from the 
optimization algorithms for the robustness evaluation and reducing the additional effort of RDO 
compared to deterministic optimization to a minimum. Unfortunately, for real world engineering 
applications outside the scatter of the optimization parameters also other important uncertain 
parameters like loading conditions or material properties have to be taken into account in order to 
obtain an engineering meaningful robustness assessment. As a consequence we often need to deal 
with different variable spaces of the optimization and the robustness parameters. Thus usually design 
runs in the optimization domain cannot be recycled directly to estimate the robustness criteria and vice 
versa.  
Therefore, we should expect that substantial RDO applications always need to consider a significant 
amount of additional information compared to a deterministic optimization task and will need 
significant additional CPU requirements. The most important additional input is information about 
uncertainties, which will start with a large number of uncertain parameters. Therefore, double checking 
of availability of the knowledge about the uncertainties and their best representation in an uncertainty 
model, the careful planning of a suitable algorithmic RDO workflow and careful checking of suitable 
measures for design robustness is recommended.  
 
Often it is recommended to start with an iterative RDO approach using decoupled optimization and 
robustness steps including an initial sensitivity analysis in the domain of the optimization parameters 
as well as a subsequent robustness evaluation in the domain of uncertain parameters. This iterative 
approach helps to better understand the variable importance and the complexity of the RDO task in 
order to adjust the necessary safety margins. Only with this knowledge and if the iterative approach 
did not converge successfully a simultaneous RDO task should and can be defined. The iterative 
approach and the simultaneous approach will be illustrated in industrial example. 
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Figure 1: Robust Design Optimization (RDO) optimize the design performance with consideration of 
scatter of design (optimization) variables as well as other tolerances or uncertainties. As a 
consequence of uncertainties the location of the optima as well as the contour lines of constraints 
varies. 
 

2.2 Garbage in, Garbage out, danger to a meaningful stochastic analysis 

When asking the question about the influence of uncertainties we need to collect the best available 
knowledge about expected uncertainties with the best possible translation into the statistical definition 
of the CAE-model. Illustrating that with a translation to a stress calculation: Nobody would question 
that a reliable stress calculation can only be achieved by using a reliable value of the Young’s 
modulus, otherwise the calculated stress value is not confident. The same question arises for the 
stochastic analysis itself. If we have no trustable information on the input uncertainties and no suitable 
approach to translate this information into adequate definitions of the scattering parameters, we 
should not perform a stochastic analysis. In such a case most likely this stochastic analysis would lead 
to useless estimates of the variations, sensitivities etc.  

2.3 Start with conservative estimations about all known important uncertainties 

Discussing how to formulate a suitable uncertainty model we should note one of the most important 
differences between CAE-based optimization and CAE-based robustness evaluation. When 
simplifying an optimization task while using just a small subset of optimization parameters and a tiny 
parameter range, we might miss the goal to improve the design significantly. Nevertheless, any 
variation is a valid space of the optimization parameters and gives you valid information about the 
optimization potential corresponding to this investigated design space. There is no risk to obtain 
unconfident or even dangerous predictions. To say it with other words, in a deterministic optimization 
task the user can reduce almost arbitrary large and complex parametric spaces to a handful of 
parameters with small ranges without loss of confidence of the obtained optimization results.  
 
In sharp contrast to that, the verification of product safety with a simplified robustness evaluation is 
only possible, if the unimportance of the neglected uncertain inputs is proven or their effect is covered 
sufficiently by additional safety factors. If we neglect significant important effects during the stochastic 
analysis, the robustness assessment based on this insufficient information may be much too optimistic 
and the results pretend an artificial safety. For that reason we recommend to address an RDO 
problem by starting with a robustness evaluation of a reference design by introducing all possibly 
affecting uncertainties and translating all knowledge in conservative assumptions about the expected 
scatter ranges. Here, we have to study which uncertainty is important and which degree of 
discretization is necessary to introduce the uncertainty into the CAE model. Then we can make sure 
that the uncertainty quantification and representation is appropriate. So we can answer the following 
questions: 
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Is it sufficient enough to check a variation window of uncertain parameters by assuming a 
conservative upper and lower bound within an uniform distribution or do we have to identify the 
distribution type more in detail? 
Is it sufficient to define single independent scattering parameters or introducing scalar parameters with 
pair-wise correlations, or is an even more sophisticated spatial correlation model, which we call 
random fields [15], necessary to represent the properties and spatial distribution of the uncertainties. 
Please find more discussion about necessary degree of discretization of uncertainties in 
[1,10,11,12,13]. 
 

2.4 We need to define confident robustness measures  

By defining an RDO task measures of variation will be including into the optimization objectives and/or 
constraints. These statistical measures like mean value, standard deviation, safety margins or 
probabilities of exceeding a critical event are outcomes of the stochastic analysis. Note that all of 
these measures are estimates and their confidence has to be proven. This is similar to the verification 
of the mesh quality of a finite element analysis: the verification of variance estimates is absolutely 
necessary in order to trust in the predicted robustness of an investigated design. Everybody agrees 
that evaluating only 10 sample points will not lead to a confident assessment of a six sigma design. A 
six sigma design requires the proof that the probability of its failure is not larger than three out of a 
million realizations. 10 sample points are sufficient only to estimate roughly a mean value and a 
standard deviation, but the projection to a small event probability related to a six sigma design has an 
almost unpredictable large error. At the same time it is a challenge for any real world RDO problem to 
balance between the numbers of design runs spend for the estimation of the variation and the 
necessary accuracy of the robustness measures to drive the design in the right direction. Therefore, 
all RDO strategies need to estimate variation values with a minimal number of solver calls. To reach 
this goal, some methods make assumptions about the linearity of the problem or use response surface 
approximations in the space of the scattering parameters whereby the final proof of robustness using 
alternative methods of CAE-based reliability analysis is of urgent need to proof the targeted 
robustness and reliability requirements.  
If the knowledge is vague about important uncertainties and their best available representation in a 
CAE model, a verification of the robustness at current product lines is strongly recommended before 
extrapolating robustness measures to future designs. 
 

2.5 Non experts of stochastic analysis needs to be able to perform RDO 

Chapter 2.1 to 2.4 discusses the importance of reliable definition of uncertainties and reliable 
robustness measures to be able to define a successful RDO task. Same kind of importance is the 
“ease” and “safety” of using RDO workflows for non experts of stochastic analysis. Although optiSLang 
[14], our general purpose software tool for CAE-based RDO, had all pieces of technology available 
since multiple years we learned it is necessary to come up with easy to use workflows, which 
safeguards users in selecting automatically most effective RDO algorithms, which safeguards user to 
check and proof estimation of variance at the end of an RDO cycle as well as safeguard users in the 
post processing before non experts of stochastic analysis feel comfortable to perform RDO and to 
trust the results. 
 

3 Main algorithmic parts of the RDO workflow 

3.1 Deterministic Optimization 

In parametric optimization, the optimization parameters are systematically varied by mathematical 
algorithms in order to get an improvement of an existing design or to find a global optimum. The 
design parameters are defined by their lower and upper bounds or by several possible discrete values. 
In real world industrial optimization problems, the number of design parameters can often be very 
large. Unfortunately, the efficiency of optimization algorithms usually decreases with an increasing 
number of optimization parameter. With the help of sensitivity analysis the designer can identify the 
parameters which contribute most to a possible improvement of the optimization goal. Based on this 
identification, the number of design parameters may be dramatically reduced and an efficient 
optimization can be performed. Additional to the information regarding important parameters, a 
sensitivity analysis may help to decide, whether the optimization problem is formulated appropriately 
and if the numerical CAE solver behaves as expected. Please find more discussion about effective 
sensitivity analysis in [2,3]. After the sensitivity analysis all the knowledge is created or verified to 
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select the most effective optimization strategy out of Gradient-based optimization algorithms, Natural 
inspired optimization algorithms with or without the help of Response Surface approximations.  
 

 
Figure 2: Recommended workflow for a single-objective optimization: from a full parameter set X the 
sensitivity analysis identifies the important parameters Xred; together with the start design x0 the 
optimization is performed and an optimal design xopt is found.  
 

 
Figure 3: Industrial Example of iterative optimization approach using sensitivity analysis to identify the 
most important parameter for the optimization potential and finally run the optimization using Adaptive 
Response Surface optimization Method (ARSM). 
 
 

3.2 Robustness evaluation 

Optimized designs may become sensitive to scatter e.g. in geometry and material parameters, 
boundary conditions and loads. Therefore, it becomes necessary to investigate, how the optimized 
design is affected by scattering model input parameters. Design robustness can be checked by 
applying stochastic analysis, like Latin Hypercube Sampling, based on a randomly generated sample 
set and a suitable definition of the scattering parameters. Therefore, robustness measures as mean 
value, standard deviation, safety margins to failure criteria or the probability of failure need to be 
introduced. In terms of using variation based measures we call the approach variance based 
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robustness evaluation. In terms of using probability based measures we call such a procedure 
probability based robustness evaluation, also known as reliability analysis. Please find more 
discussion about the necessary balance between reliability of the definition of scattering parameters, 
the reliability of the stochastic analysis and the reliability of the robustness measures for CAE-based 
robustness evaluations for industrial applications in [1, 5, 8, 9, 10, 11, 13].  
 

 
Figure 4: Flowchart of the variance-based robustness evaluation with an included sensitivity analysis 

 
Figure 5: Industrial Example of a robustness evaluation of the NVH performance of a passenger car 
[8] 
 

3.3 Robust Design Optimization 

Talking about the combination of robustness evaluation and optimization the frequency of coupling 
and interaction of both tasks has to be defined. We call it an iterative Robust Design Optimization 
(RDO) when deterministic optimization is combined with variance-based robustness analysis at certain 
points during the optimization process. Of course this requires the introduction of safety factors, which 
should assure that a sufficient distance to the failure criteria is given during the deterministic 
optimization. These safety factors may be adjusted iteratively during the iterative RDO process and a 
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final robustness and reliability proof is mandatory at least at the end of the procedure. This procedure 
is the state-of-the-art in the majority of publications on real world RDO projects like [6,7].  
 

 
Figure 6: Flowchart of an iterative Robust Design Optimization with final reliability proof 

 
Figure 7: Industrial Example of iterative Robust Design Optimization of a Design for Six Sigma 
development process of an electric connector [6] 
 
If the safety margins fluctuate within the optimization domain, e.g. due to several interacting failure 
phenomena, an iterative procedure may require a large number of iterations. Because of very 
fluctuating safety distances to the main robustness criteria, one candidates for simultaneous RDO is 
the minimization of brake noise excitation [5,10]. In such a case, an automatic approach where the 
robustness criteria are estimated for every candidate in the optimization domain, a so-called nominal 
design, may be more efficient with respect to the CPU requirements compared to iterative RDO. That 
procedure we call simultaneous RDO approach. Since the robustness evaluation is performed as an 
internal loop within the global optimization loop, this approach is sometimes also called “loop in loop” 
RDO. Especially when probability based measures are used to quantify design robustness and safety 
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the numerical effort significantly increase when for every candidate in the optimization loop the 
robustness or reliability is measured. Therefore the simultaneous RDO approach can be found more 
frequently when the single CPU run of a design evaluation is relatively inexpensive like for system 
simulation [4].  

 
Figure 8: Flowchart of simultaneous variance-based Robust Design Optimization approach with final 
reliability proof 
 

 
Figure 9: Industrial Example of simultaneous variance-based Robust Design Optimization of brake 
systems [5] 
 

4 Summary 
Successful integration of RDO strategies into industrial CAE-based virtual product development cycles 
needs a RDO strategy which is in balance with the available knowledge about uncertainties of 
scattering variables, with available criteria’s to reliable quantify robustness or safety of designs as well 
as with the dimensionality and non-linearity of the RDO task.  
 
For definition of successful objectives and criteria’s for robust designs sensitivity analysis in the design 
space of optimization as well as in the space of scattering variables are very helpful. Any kind of 
design space defined by a hand full or hundred’s of optimization parameter is a valid space to optimize 
the design. In contrast to that for real world RDO applications we have to expect that at least in the 
robustness space we have to start with a large number of potentially important scattering variables. In 
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contrast to the design space of optimization the variable reduction in robustness space starting from 
all possible influencing variables is only possible with know how about unimportance of scattering 
variables. The number of variables which need to be taken into account is crucial for selection of 
appropriate optimization as well as stochastic algorithms. Also for the task of reducing to the most 
effective optimization variables as well as most important scattering variables sensitivity analysis is the 
key.  
 
If the RDO task is defined with appropriate robustness measures and safety distances multiple 
optimization strategies can be performed successfully to drive the design in the direction of being 
optimal and robust. If a design evaluation needs significant time the balance between the number of 
CAE design runs and the accuracy of robustness measures is a challenge for all RDO strategies, 
iterative or simultaneous. Then all of them try to minimize the number of design evaluations to 
estimate the robustness measures. If small failure probabilities (like smaller than 1 out of 100) need to 
be proven, algorithms of reliability analysis have to applied, at least at the end of an RDO process to 
prove the reliability of the optimal design.   
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