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1. Introduction  

During the last decades CAE based optimization has become a 
standard technology. A current focus is the enhancement of bringing 
robustness and optimization together for the design – Robust Design 
Optimization (RDO). 

With the increase of computing power and the efficient parallelization 
for Computational Fluid Dynamics (CFD) simulations more and more 
CFD applications like for turbo machines, combustion engines or 
electric devices appear using RDO for the analysis.    

For turbo machines the efficiency is the most important criterion, for the 
combustion engines the fuel consumption is one of the most important 
criteria, and for example the cooling rate of a flow for the high voltage 
battery is among the important criteria for electric cars. 

All these criteria or output parameters do not depend only on a single 
set of  values for the input parameters, which could be optimized to 
something like the ideal operating situation. Therefore usually not single 
ideal operating conditions are important but rather the operating map or 
curves, mapping the most important input variables to the output 
variables. 

For example with regard to fuel consumption the instant economy 
varies in a large range depending on the specific driving situation and  
on the characteristics of the vehicle, like for a car with a turbo charging 
system for example on the characteristics of the operating map of the 
compressor of the turbo charger.   

For the CFD simulations a sensitivity analysis in combination with the 
generation of meta models can be used to analyse these operating 
maps. The accuracy of the meta models and the robustness of these 
calculated operation maps have to be examined carefully in detail. 



Therefore the prediction quality of meta models becomes increasingly 
important. For a closer examination with regards to robustness 
evaluation the sensitivity analysis also has to include scattering 
variables.  

Finally with the approach of using meta models to establish operating 
maps a new technique can be introduced  that is also very helpful for 
the engineers not doing themselves the CFD simulations.   

In Chapter 2 we will provide a basic introduction of Robust Design 
Optimization. The application of RDO in CFD will be shown in Chapter 3 
with an example from turbo machinery. In Chapter 4 the concept of 
operating maps and their presentation by meta models will be 
introduced and as an example the possible application to the design of 
turbo chargers will be discussed.  

2. Robust Design Optimization 

Optimization and Robustness 

Nowadays optimization is well established in engineering. Dependent 
on the task, different optimization categories like form, topology or 
parametric optimization are useful. In this paper we refer to the 
parametric optimization. The availability of parametric models increases 
however still this is a fundamental issue for the broader usage of 
parametric optimization. The target for the optimization is often the 
reduction of material consumption. This pushes the design towards the 
boundaries of allowable stresses, deformations or other critical design 
responses. At the same time safety margins are asked to be reduced 
and products should be cost efficient and not over engineered. Of 
course a product should not only be optimal under one possible set of 
parameter realizations. It also has to function with sufficient reliability 
under scattering environmental conditions. In the virtual world we can 
proof that e.g. with a stochastic analysis, which leads to CAE-based 
robustness evaluation (Most et al. 2015). The combination of CAE-
based optimization and robustness evaluation leads to the area of 
Robust Design Optimization (RDO). 

The main idea behind that methodology is, that uncertainties are 
considered in the design process. These uncertainties may have 
different sources like, in the loading conditions, tolerances of the 
geometrical dimensions and material properties caused by production 
or deterioration. Some of these uncertainties may have a significant 
impact to the design performance which has to be considered in the 
design optimization procedure. 
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A sensitivity analysis is very useful to explore the variation space as a 
preprocessing step. By definition, sensitivity analysis is the study on 
how the variation in the output of a model can be apportioned, 
qualitatively and quantitatively, to different sources of variation of the 
input of a model (Saltelli et al. 2008). In order to quantify this 
contribution of each input parameter to each response variable under 
real world CAE conditions like non-linear, noisy problems having a large 
number of parameters and suffering of loss of single designs 
evaluations, variance based methods are very suitable. With these 
methods the proportion of the output variance, which is caused by an 
input variable variation, is directly quantified. That approach can be 
applied in the same manner in the domain of optimization parameters, 
by representing continuous optimization variables with uniform 
distributions as well as in the domain of uncertainties by using adequate 
distribution functions and correlation models. Therefore, variance based 
sensitivity analysis is very suitable as an optimization and robustness 
preprocessing step to investigate and identify variable importance as 
well as to estimate the amount of unexplained variation of response 
values which may occur from CAE solver noise,  inappropriate 
extraction of responses as well as unidentified functional correlations to 
the input variation.  

In contrast to local derivative based sensitivity methods, global variance 
based approaches quantify the contribution with respect to the defined 
total variable variation. Unfortunately, sufficiently accurate variance 
based methods require a huge numerical effort due to the large number 
of necessary simulation runs. Therefore, often meta-models or 
simplified regressions are used to represent the model responses by 
surrogate functions in terms of the model inputs. However, many meta-
model approaches are available and it is often not clear which one is 
most suitable for which problem (Roos et al. 2007). Another 
disadvantage of meta-modeling is its limitation to a small number of 
input parameters. Usually the approximation quality decreases for all 
meta-model types dramatically with an increasing dimension. As a 
result, an enormous number of samples is necessary to represent high-
dimensional problems with sufficient accuracy. In order to overcome 
these problems, Dynardo developed the Metamodel of Optimal 
Prognosis (Most and Will 2008, 2011). In this approach the optimal 
input parameter subspace together with the optimal meta-model type 
are automatically determined with help of an objective and model 
independent quality measure, the Coefficient of Prognosis (CoP).  

The automated MOP/CoP approach solves three very important tasks 
of a parameter sensitivity analysis: the identification of the most 
important combination of input parameters, together with the best 



suitable surrogate function with regards to the optimal forecast quality 
and a quantification of this forecast quality. 

Parametric Optimization  

In parametric optimization, the optimization parameters are 
systematically varied by mathematical algorithms in order to get an 
improvement of an existing design, ideally approaching a global 
optimum. The values of the design parameters have lower and upper 
bounds and may be continuous or discrete. In real world industrial 
optimization problems, the number of design parameters can often be 
very large. Unfortunately, the efficiency of mathematical optimization 
algorithms also decreases with an increasing number. With the help of 
sensitivity analysis as a preprocessing step it is possible to identify the 
parameters which contribute most to a possible improvement of the 
target function for the optimization. Based on this identification, the 
number of design parameters may be dramatically reduced and an 
efficient optimization can be performed. Additional to the information 
regarding important parameters, a sensitivity analysis may help to 
decide, whether the optimization problem is formulated appropriately 
and if the numerical CAE solver behaves as expected. 

Robustness evaluation 

Optimized designs may become sensitive to scatter e.g. in geometry 
and material parameters, boundary conditions and loads. Therefore, it 
becomes necessary to investigate, how the optimized design is affected 
by scattering model input parameters. Design robustness can be 
checked by applying a systematic perturbation analysis, like Latin 
Hypercube Sampling, based on a randomly generated sample set and a 
suitable definition of the scattering parameters. Therefore, robustness 
measures as mean value, standard deviation, safety margins to failure 
criteria as well as the probability of failure need to be introduced. In 
terms of using variation based measures we call the approach variance 
based robustness evaluation. In terms of using probability based 
measures we call such a procedure probability based robustness 
evaluation, also known as reliability analysis.  

Robust Design Optimization 

The combination of robustness evaluation and optimization can be done 
in several ways. We call it an iterative Robust Design Optimization 
(RDO) when deterministic optimization is combined with variance-based 
robustness analysis at certain points during the optimization process. Of 
course this requires the introduction of safety factors, which should 
assure that a sufficient distance to the failure criteria is given during the 
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deterministic optimization. These safety factors may be adjusted 
iteratively during the iterative RDO process and a final robustness and 
reliability proof is mandatory at least at the end of the procedure. This 
procedure is the state-of-the-art in the majority of publications on real 
world RDO projects (Roos et al. 2009).  

If the safety margins fluctuate within the optimization domain, e.g. due 
to several interacting failure phenomena, an iterative procedure may 
require a large number of iterations. In such a case, an automatic 
approach where the robustness criteria are estimated for every 
candidate in the optimization domain, a so-called nominal design, may 
be more efficient with respect to the CPU requirements. That procedure 
we call simultaneous RDO approach. Since the robustness evaluation 
is performed as an internal loop within the global optimization loop, this 
approach is sometimes also called “loop in loop” RDO.  

3. Example: Turbomachinery 

Challenges in turbomachinery design  

There are many variables involved in turbomachinery design, each 
causing a complex effect on the final product performance. Today’s 
most common design methods start with a one-dimensional analysis 
and include engineering experience to obtain an initial design having a 
reasonable efficiency level of approximately eighty five percent.  

The next step is usually a computational fluid dynamics (CFD) 
simulation. This provides a more detailed look at the flow velocity as 
well as direction and pressure conditions. It also identifies issues such 
as recirculation which cannot be detected with one-dimensional 
analysis. However, to run such a simulation takes normally a 
considerable amount of time and each run provides diagnostic 
information about just one design iteration. 

These results from the CFD simulation are usually reviewed to modify 
and improve the design in a more intuitive way. However even 
outstanding experts are rarely capable of achieving a 90%+ efficiency 
level which can be found in today’s best-in-class designs. Attaining this 
level requires a much more sophisticated analytical process. By using 
CFD combined with RDO, hundreds or even thousands of potential 
designs can be analyzed automatically. Even with the latest computing 
hardware, it is still a challenge to deal with the large amount of 
computing time and resources required to conduct such simulations. 
Consequently, turbomachinery designers want to address this 
challenge with optimization algorithms that reduce the number of 
simulation runs required to explore the design space and to identify the 



best designs. There are many different optimization algorithms 
delivered as black box applications which often require considerable 
mathematical expertise to operate. These algorithms can also fail to find 
an optimal solution because of limitations in their capacities. 

Due to the complexity of turbomachinery development, parameters 
leading to optimal solutions are often located in spaces surrounded by 
relatively inefficient designs. Therefore, optimization algorithms that 
push efficiency towards higher levels often fail to identify the optimal 
solution, because, while avoiding surrounding low-efficiency designs, 
they tend to shift temporarily towards design spaces of reduced 
efficiency. 

Another fact making turbomachinery development complicated is that 
the structural design process must be performed simultaneously in 
order to ensure the design will be able to handle the resulting loads. 
Typically, design and structural engineers work in different departments 
with different tools. Both frequently make design modifications. This 
might create the risk that the two groups work on different files causing 
extra expenses and delays in the downstream process.   

Integrated approach  

This chapter explains an integrated approach for optimizing the design 
of a centrifugal compressor while ensuring sufficient robustness 
towards manufacturing variations. The design geometry, including the 
blades and hub body, was defined in ANSYS BladeModeler, which is 
fully integrated into the ANSYS Workbench environment. The design 
was defined in a number of 2-D sketches, either at span-wise positions 
or at arbitrary user-defined positions. Thus, a full 3-D design was 
interactively generated providing quantitative information such as blade 
angles and throat area. 

In this application, the geometry of the blades was defined by the 
meridian flow path consisting of two parametric sketches, one for the 
hub and another for the shroud. The location of the leading and trailing 
edges for the rotor, as well as the return guide vane, were defined 
based on the meridian plane. Angle and thickness distribution of the 
hub and shroud layer defined the shape of the blades (Figure 1). There 
were a total of 17 input parameters. 
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Figure 1: Parametric geometry 

 

Computational fluid dynamics 

A key advantage of the integrated approach is that both the flow and 
the structural groups work with the same design geometry using the 
same environment. This saves a considerable amount of time by 
eliminating the need for sending modifications back and forth to enter 
them into the model. The integration also includes the structural 
simulation, as well as the flow simulation, into the optimization process. 
Thus, for example, the optimization can be configured to select the 
design with the highest efficiency while also considering specific static 
and dynamic mechanical properties. 

 



 

Figure 2: CFD simulation results 

 

Based on the mesh resolution defined by the user, ANSYS TurboGrid 
was used to automatically generate the mesh for the computational fluid 
dynamics (CFD) simulation. The model included one passage per 
component with a profile-transformation rotor-stator interface as well as 
with chronological periodic interfaces. The total pressure and 
temperature were defined at the inlet, while the mass flow rate was 
defined at the outlet. Assuming an ideal gas, ANSYS CFX was then 
used to solve the model. The output parameters, such as total pressure, 
temperature ratio and isentropic or polytrophic efficiency were 
determined using CFX-Post. Figure 2 shows typical simulation results. 

The transient rotor–stator capability resolved the true transient 
interaction between components in regard to maximum accuracy. It can 
be applied to individual pairs of blade passages or to the entire 360-
degree machine. Setup and use was as simple as it had been with the 
other frame-change models. It was also possible to combine transient 
and steady-state frame change interfaces in one computation. This was 
complemented by the inclusion of the second-order time differencing, 
which provided greater transient accuracy. Furthermore, transient blade 
row (Time- and Fourier transformation) models allowed unequal pitch 
systems to simulate multi-rows using only a few blade passages and 
less than the full 360-degree geometry. 
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Structural analysis 

The mechanical model used one segment of the rotor with cyclic 
symmetry reducing computational time without any loss of numerical 
accuracy. The model was fixed at the inner radius. The rotor was 
loaded by centrifugal force and fluid pressure using results of the CFD 
simulation. Data handling and fluid-structure coupling were 
automatically performed in ANSYS Workbench. After the completion of 
the static simulation, a pre-stressed modal analysis was performed. The 
results of the mechanical simulation included the eigen frequencies, the 
maximal displacement and the von Mises stress (examples are shown 
in Figure 3). The design requirements included an upper limit of those 
stress and eigenvalues that did not match the rotational velocity in order 
to avoid resonance. 

 

 
 

Figure 3: Mechanical displacement and stress 

 

Sensitivity analysis 

With the flow and structural models set up, the next step was to 
automatically simulate the minimum number of design points needed to 
map out the complete design space. Thus, not only the design meeting 
the spec, but also those providing the highest possible level of 
performance while meeting other constraints, could be confidently 
identify. The software tool optiSLang was used for sensitivity analysis, 
optimization, robustness evaluation and reliability analysis. The 



optiSLang inside ANSYS Workbench integration runs simulations by 
importing parameters automatically, minimizing the required user input. 

A global sensitivity analysis uses a designed experiment to evaluate the 
reliability of the numerical model and identifies the most important input 
parameters. The Metamodel of Optimal Prognosis (MOP) algorithm 
uses Latin Hypercube Sampling to scan the multidimensional space of 
the input parameters. A Latin Hypercube is an n-dimensional object 
representing n different analyzed design parameters where each 
sample is the only one in its axis-aligned hyperplane. In this case, there 
were about 50 design parameters and about 100 design points were 
solved in order to create the MOP. This model represented the original 
physical problem and enables analyses of various design configurations 
without any further simulation runs. 

The selected integration platform provides a seamless data transfer 
between applications and process controllers that sequentially simulate 
all of the design points and collate the outputs. Parametric persistence 
between the software components makes it possible to automate the 
optimization process including file transfer, mapping between physics, 
boundary conditions, etc. When the user clicks the Update All Design 
Points button, the first design point, containing the first set of parameter 
values, is sent to the parameter manager of ANSYS Workbench. There, 
the design modifications are processed from the CAD system to post-
processing. The new design point is simulated and output results are 
passed to the design point table where they are stored. The process 
continues until all design points are solved and the design space is 
defined for later optimization. 

The Coefficient of Prognosis (CoP) determines whether the meta model 
is reliable or not. This calculation also determines which input 
parameters have a strong influence on the outputs. The response 
surface graphically depicts the influence of the relevant parameters on 
the system’s performance and shows where the highest efficiency is 
located. Figure 4 shows the CoP and the response surface. In this 
case, the CoP was 84%, which indicated that the model was admissible 
but still could be optimized. The sensitivity analysis generated an 
efficiency of above 89% based on relatively rough simulations run 
parallel on a computing network overnight. This is about the maximum 
level that a highly experienced designer could expect to achieve within 
a reasonable time period. 
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Figure 4: Coefficient of prognosis and metamodel 

 

The sensitivity analysis also showed that the eight most significant 
parameters account for nearly all result variations. This information was 
used to decisively reduce the time required for the detailed simulation 
by eliminating the variables that do not appear to have a significant 
impact on the results. For verification, the engineer can also check the 
numeric model, such as by examining the upper and lower bounds of 
the design parameters. 

 

Design optimization 

With the entire design space examined and the most promising region 
selected, the next step was running a more detailed simulation. 
optiSLang’s optimizer provides a wide selection of algorithms. In this 
case, the sensitivity analysis showed that the practical designs were 
located in a relatively small area of the design space. The Adaptive 
Response Surface Method (ARSM) was selected because of its 
efficiency to generate optimal solution based on starting points that are 
already in the vicinity of the optimum. If the sensitivity analysis had 
shown many design space areas containing practical designs, it would 
have been necessary to choose a different algorithm. 

 



 
Initial  SA  ARSM  EA  

Pressure Ratio  1.3456  1.3497  1.3479 1.3485 

Efficiency [%]  86.72  89.15  90.62 90.67 

# Simulations  -  100  105 84 

Table 1: Design optimization 

The direct optimization with ARSM generated another 1.5% 
improvement in the efficiency level to 90.62%, which is truly a best-in-
class result. This level of efficiency is beyond what could be reached by 
using manual methods regardless of the designer’s experience. With 
ARSM, approx. 10 simulations can be run parallel resulting in a required 
time of about three days.  

Using all parameters, a second optimization was performed with an 
Evolutionary Algorithm (EA) as a contol point to check whether the 
elimination of design parameters in the first optimization was 
appropriate or not. The EA simulation hardly provided any further 
improvement, confirming that the additional input parameters have a 
negligible effect on the results.  

 

Robustness evaluation 

So far, the simulation dealt with an idealized setting where, according to 
the CAD geometry for example a 50 degrees angle is assumed to be 
exactly 50 degrees. In real world manufacturing, of course, one blade 
will have an angle of 50.1, the next 49.9 and so on. All of the other 
design parameters, including material properties, also vary. In order to 
determine the effect of this variance, we need to design a probability 
distribution that will simulate the real world manufacturing output. A 
Gaussian distribution is often used to model manufacturing tolerances 
while a log normal or Weibull distribution is common for material 
properties. Again, a Latin Hypercube sampling distribution was used 
because of its efficient ability to estimate the outputs of a large number 
of possible designs based on a small sample of actual simulations.  
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Figure 5: Robustness evaluation of pressure ratio 

 

The robustness analysis results showed that an estimated 13% of the 
manufacturing volume had a pressure ratio outside the limits. The CoP 
was 83 percent, which indicated that the results are reliable. The 
robustness analysis indicated that the fluctuation of pressure was 
primarily caused by the rotational velocity, the so called myomega 
variable shown in Figure 5. Controlling this parameter will have a major 
impact on pressure distribution. It was also worth noting that the 
pressure ratio was tilted towards the lower limit. Shifting the distribution 
in the direction of the higher limit will significantly reduce the proportion 
outside the limits. The other design parameters caused negligible 
effects which means there might be potential for opening up 
manufacturing tolerances in order to reduce costs. 

This example from turbomachinery showed how an automated process 
can be applied to achieve robust design optimization with reproducible 
methods. The process provides automatic geometry regeneration, high-
quality meshing for each possible design, automatic solver execution as 
well as automatic post-processing.  



4. Operating Maps and Meta Models for Turbo Charging 
Systems 

At the present time the internal combustion engine is widely used for 
passenger cars and commercial vehicles applications. Today's newly 
developed combustion engines must meet five key demands. The 
engine should cause low costs, have a long life cycle, provide a good 
response with a low fuel consumption and meet the actual emission 
targets. To achieve these objectives, increasing of the engine power 
absolute and specific becomes more and more important. To fulfill the 
core requirements in engine development, today almost all diesel 
engines for commercial applications use an exhaust-gas turbocharger. 
During the design process, the combination of a radial turbine and a 
centrifugal compressor has a decisive influence on the economic 
operation of a combustion engine. 

For matching an exhaust-gas turbocharger with an engine the 
performance values, such as number of cylinders, power, mass air flow, 
fuel consumption, boost pressure, exhaust back pressure, etc. are 
needed for engine design points for the target engine. Based on the 
performance values, at first a suitable compressor wheel and 
compressor housing geometry combination is selected. The 
compressor map (Figure 6), which is determined based on the selected 
compressor components is either based on measured data or as a 
result of numerical data, which are determined with the help of 1D and 
3D-CFD programs. 

The compressor map has three limitations that restrict the map width 
and height. These are the surge-line and the choke-line, which exist 
due to the aerodynamics and the maximum compressor speed ucmax. 
The maximum compressor speed is limited by the allowable mechanical 
stresses in the impeller. 
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Figure 6: Compressor map with extended map range 

At the surge-line the flow tears by low mass flow and high pressure ratio 
that the delivering of fresh air flow is interrupted. The air mass flow run 
backwards through the compressor until a stable pressure ratio is 
reached with a positive mass flow rate, so the pressure is built up again. 
By periodic repeating of this procedure, the term "pump" is derived. 

At the choke-line the flow reaches the speed of sound at the narrowest 
cross-section at the inlet of the compressor wheel. If this condition is 
reached, a further increase in flow-rate is not possible even by 
increasing the compressor speed. All flow-curves run to the maximum 

flow rate value at a pressure ratio of CT=1. 

With the help of the identified compressor map the engine design points 
are investigated whether the map range of the map is sufficient. 
Depending on the application of the engine, a wide range of the 
compressor map is needed. If the map range is not adequate a new 
impeller has to be designed to get an extended compressor map 
(Figure 6) to reach the requirements. 

The impeller geometry is generated by special turbo machinery design 
software. The redesign of the existing impeller can be done by an 
automatic optimisation by numerical methods by using 3D-CFD 
simulations in combination with an optimiser (Frese et al. 2012). 



Therefore the MOP procedure is applied to the compressor. Figure 5 
shows that the CoP of the total pressure ratio ΠC and the total 
temperature ratio ΘC is pretty high for both operation points. A value 
over 80% is known as a good and reliable result. Common reasons for 
a small value are a too small number of design points or “numerical 
noise” in the simulation. The “numerical noise” was reduced by ta best 
practice study (Frese et al. 2012) and the monitoring of the analysis 
showed a stable value of the CoP. The isentropic efficiency ηCis, a more 
sensitive result than the other ones, has significant smaller values; i.e. 
we can rely to the MOP in terms of ΠC and ΘC, but we need to be 
careful about ηCis. 

It is important to be aware that all results are with respect to the chosen 
input parameters and their lower and upper limit! 

The efficiency is the most important output parameter for the 
optimization and this is the reason, why the MOP is not used for 
optimization (It would be the fastest way!); a direct algorithm is chosen, 
see below. 

 

Figure 7: Coefficient of Prognosis (CoP) and important input variables on isentropic 

efficiency, total pressure and temperature ratio for both operating points OP1 and OP2 
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All further analysis steps are done for the relevant parameters only, 
which can also be seen in Figure 7. Figure 8 shows the analysis, based 
on the Meta-model: 

 

Figure 8: Meta-model for a) ηCis OP1 b,c) ηCis OP2 d) Anthill plot ηCis OP1 vs. OP2 

The isentropic efficiency of OP1 depends mainly only on one variable 
x1, Figure 8a, while at OP2 it is a function of three important variables 
x1, x2 and x3, Figure 8b and 8c. It can be seen that a larger value of x1 

would result in a better efficiency at OP1 while it would reduce the value 
at OP2, i.e. we have a conflict of optimization goals. Figure 8d shows 
an Anthill Plot, the efficiency at OP1 vs. OP2, where one can see the 
assumed Pareto Front. If one chooses a certain point on the Pareto 
Front, one variable can only increased by decreasing the other one. 

The Sensitivity Analysis can be summarized: 

1. The Meta-model is reliable, due to the CoP values of ΠC and ΘC 
2. A reduced set of parameters was found, 3 out of initial 15. 
3. The Meta-model is plausible, with respect to physics 

This result is the basis for the optimization procedure: The fastest way, 
using the MoP directly (instead of doing numerical simulations), is not 
recommended, because of the small CoP of the efficiency; i.e. a direct 
optimization algorithm is required. We found Pareto conflict for the 
efficiency, for further resolution of this a Pareto Optimization is required. 



Because these algorithms require a high number of design evaluations 
we did not use it in here. We resolved the conflict in terms of objectives 
by constraints: 

 “old” objective: ηCis OP2 = max and ηCis OP1 = max 

 “new” objective: ηCis OP2 = max and ηCis OP1 > ηCis OP1initial – 
1% 

The new objective means, that the efficiency at OP2 should be as big 
as possible, while we accept a smaller one at OP1. 

As Optimization algorithm we choose the Adaptive Response Surface 
Algorithm (ARSM). The main properties of this algorithm are: 

 Finds the optimum, depending on the start point. From the 
Sensitivity Analysis we can see, that there is a global optimum 

 Efficient for a small number (up to 10-15) of input variables (the 
Sensitivity Analysis showed that 3 input variables are important)  

 Very robust algorithm 

The ARSM works like that: 

1. Sample the design space with a certain number of designs and 
solve them 

2. Build a “simple” response surface and find the best point 
3. Reduce the size of the design space around the best point and 

do next iteration, back to 1. 

After 6 iterations, with 45 design evaluations we see a converged 
solution, see Figure 9: 

 

Figure 9: Convergence of the Adaptive Response Surface Algorithm. Convergence 

plot of the objective function, design in parameter space and Anthill plot of evaluated 

designs 
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The result shows us, that x2 becomes a small, while x3 a large value; 
one can also see on the Meta-model. For x1, “carrying” the conflict, we 
result in a medium value. The final optimized design increased the 
efficiency at OP2 to 2%, while 0.5% at OP1 is “lost”. Figure 9 shows 
also a better resolution of the Pareto conflict, because the ARSM is 
“driven” to the border of what is possible. Design 38 is the best in terms 
of the objective function, nevertheless there are other interesting 
designs computed. 

Figure 10 a) shows the measured compressor maps of the initial and 
optimised impeller geometry. 
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Figure 10: Comparison of measured compressor map for initial design and optimised 

design: a) compressor map; b) difference in total isentropic compressor efficiency 

between optimised and initial design 

The comparison shows that the surge-line and the speed lines below 
uc=420 m/s don’t deviate form the initial map. Only the speed line and 
therefore the total compressor pressure ratio at ucmax is lower than the 
initial one. This is caused by the backward curved main blade which 
reduced the maximum pressure ratio. Besides the reduced pressure 
ratio the flow capacity could be increased, which could be seen by the 
expanded flow curves above uc=420m/s. 

To reach the optimisation goals the total isentropic compressor 
efficiency at OP1 has to be reduced to increase the flow capacity. This 
approach leads to efficiency lost and gain in the optimised compressor 
map.  

Therefore the delta isentropic efficiency CisT is used, which is defined 

by the efficiency of the optimised design CisT opt minus the efficiency 

from the initial design  CisT ini. 

Figure 10 b) shows difference map of the measured efficiency between 
both designs in which the map range is lower than in Figure 10 a) 
because only the intersection is displayed. The results show that a gain 
of efficiency up to 2.5% could be identified above mcn = 0.9 by a 
simultaneous reduction of the efficiency of 1.5% in the largest range of 
the map. Only at the lower map boundary (red ellipse Figure 10 b) the 
efficiency breaks down by 3.5%. 
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5. Conclusion and Outlook 

This paper discussed the introduction of RDO for applications including 
3D-CFD simulations. The current approach for RDO with CFD 
applications is in the most cases iterative RDO, meanwhile 
simultaneous RDO for CFD is still very challenging. 

An example from turbomachinery showed how a MOP/CoP based 
automated process is used to achieve robust design optimization with 
reproducible methods.  

The usage of meta models with a high prediction quality will become an 
important instrument for the analysis of operating maps and in general 
for the understanding and exploitation of the technical possibilities to 
produce an improved robust design.    
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