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Abstract 

Within the design development phases the Design for Six Sigma concept op-
timizes a design such that the products conform to Six Sigma quality. Which 
means that robustness and reliability are explicit optimization goals even with 
variations e.g. in manufacturing, design configuration and environment. The 
application of the reliability- and variance-based robust design optimization re-
sults in optimized designs such that they are insensitive to uncertainties up to a six 
sigma safety level. The paper shows an efficient iterative decoupled loop ap-
proach for reducing the necessary number of design evaluations. This is 
exemplary applied to a CAD parameter-based robust design optimization of an 
electronic connector element. Whereby, the CAE integration is realized by the 
optiSLang and ANSYS Workbench environment. 
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1 Introduction 

A large number of problems in manufacturing processes, production planning, 
finance and engineering design require an understanding of potential sources of 
variations and quantification of the effect of variations on product behaviour and 
performance. Traditionally, in engineering problems uncertainties have been 
formulated only through coarse safety factors. Such methods often lead to over-
designed products. Otherwise, the application of the deterministic optimization 
often results in designs with high imperfection sensitivities (oversensitivity de-
signs) and non-robust and unsafe (under designed products) behaviour because the 
deterministic optimal design is frequently pushed to the design space boundary. 
The design properties have no room for tolerances or uncertainties. Because of 
that, an integration of the assessment of robustness, reliability and safety into the 
optimization is necessary. Within the robust design optimization the design pa-
rameters can be random variables themselves and in addition the objective and the 
constraint functions can be random types. Using the robust design optimization 
we obtain robust optimized designs such that they are insensitive to uncertainties 
within a safety level of 2 sigma. The reliability-based optimization includes the 
failure probability as constraint condition or as a term of the objective function 
itself. So we obtain designs with minimal failure probability applicable for all 
safety levels up to 6 sigma.  

Usually, the robust design optimization problem is solved as a combina-
tion of a deterministic optimization in the design space and a stochastic analysis in 
the space of the random influences for every deterministic design. This procedure 
leads in general to an inefficient double loop with a large number of design 
evaluations, e.g. finite element analysis. Furthermore, in real case applications of 
the virtual prototyping process, it is not always possible to reduce the complexity 
of the physical models and to obtain numerical models which can be solved 
quickly. Usually, every single numerical simulation takes hours or even days. 
Although the progresses in numerical methods and high performance computing, 
in such cases, it is not possible to explore various model configurations. An over-
view about advanced methods to solve robust design optimization problems can 
be found e.g. in Roos (2008). However, their use is restricted to problems with 
few random and optimization variables. 

2 Successive robust design optimization 

The most general way for reducing the required number of design evaluations is 
the application of an iterative decoupled loop approach (see e.g. Chen et al. 
(2003)) in combination with identification of the most significant random and 
design variables using the multivariate statistic within the robustness evaluation. 
According the flow diagram in figure 1, in a first step the robustness evaluation 
can be used to prove the predictive capability of the simulation model and to 
identify the most important design parameters to solve the deterministic optimiza-
tion problem, efficiently. After that, it is necessary to evaluate robustness and 
safety of the design at the current deterministic optimum.  
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Figure 1: Basic concept of a successive robust design optimization. 

 
Afterwards the deterministic formulation of the constraints and the objec-

tives is to modify according to the achieved robustness, reliability or sigma level 
and the deterministic optimization have to be repeated until the requirements in 
terms of robustness and safety are fulfilled. Although, the optimization and reli-
ability analysis runs mostly efficient in the space of the current significant 
parameters. So every size of problem definition (number of design and random 
parameters) is solvable for all kind of robustness values in combination with the 
consideration of the failure probability within all sigma levels. Furthermore, this 
proceeding allows highly flexible user interactions at every iteration step. At any 
time, the user can adapt the optimization problem with respect to the optimization 
goals, constraints and model configurations and can add additional requirements 
as a result of the advanced virtual design processes. 

However, for a global variance-based robustness analysis (see e.g. Bucher 
(2007)) it is recommended to scan the design space using stochastic sampling 
methods and to estimate the sensitivity using the multivariate statistic based on 
surrogate models (for detailed reading see optiSLang (2009)).  
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In contrast to a standard Latin Hypercube sampling with Cholesky decom-
position of the correlation matrix the advanced method minimizes the sampling 
error of the linear correlations by an internal optimization procedure using a col-
umn-pairwise-switch algorithm. This approach works independently of the sample 
size, thus it is also applied for a number of design evaluations which are smaller 
than the number of parameters. Additional to the generation of an initial design 
this advanced Latin Hypercube sampling method can be used to generate addi-
tional samples to an existing sample set. Any sampling type of the existing set can 
be considered, the final set is obtained by minimizing the correlation errors of the 
merged set of initial and additional samples. If the existing set is also generated by 
Latin Hypercube sampling, the optimal number of additional samples is the dou-
ble amount of the initial number. 

Results of a global variance-based sensitivity study are the most significant 
parameters of the optimization or random variables due to important model re-
sponses. So, it is possible to identify the sub domains and very efficient adaptive 
approximation methods can be used for optimization and reliability analysis (Roos 
et al. (2006)). 

3 Process integration 

3.1 Introduction 
Typically, there are two ways for integration of arbitrary external CAD and CAE 
programs, as shown in figure 2. First, reading and writing of parametric data to 
and from ASCII input and output files, is the most general way to doing integra-
tion of any engineering processes. The second way provides CAD-based 
parameterization using bidirectional interfaces to binary input and output parame-
ters. Therefore exit several optiSLang interfaces, e.g. for ANSYS, ABAQUS, 
CATIA and EXCEL. Within the application example we used the optiPlug inter-
face to ANSYS Workbench. 

3.2 Binary-based parameter process integration 
For a most user-friendly integration of the CAD model and FEM analysis we used 
the ANSYS Workbench environment, as shown in figure 3. ANSYS Workbench 
reads and writes binary data to and from many CAD software in order to explore a 
wide range of responses. Within Workbench all input and output parameters are 
created. The optiPlug interface creates an optiSLang project with predefined 
parameter descriptions and writes and reads the current parameters and responses. 
Furthermore, optiSLang starts Workbench as a batch process, if necessary using 
parallel distribution of several Workbench processes. 
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Figure 2: Definition of parameters and optimization task and process integration of arbitrary CAD 
and CAE tools in the context of optimization and stochastic analysis. 
 
 

 
Figure 3: Binary-based CAE parameter definition within the ANSYS Workbench environment 
and using the optiPlug interface of optiSLang. 

 

ANSYS Workbench 
Structural Mechanics - Fluid Dynamics - Heat Transfer - Electromagnetics 

An adaptable multi-physics design and analysis system that inte-
grates and coordinates different simulation tasks 

  CCAADD  //  PPDDMM  

Sensitivity Robustness Optimization Robust Design Reliability
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4 Application example 

4.1 Design for six sigma of the connector element 
The figure 4 shows the CAD model of the electronic connector element with two 
double counted spring rows. To ensure the functionality of the connector 50% of 
the contact forces should be greater than 1N and the sum of all forces should be 
lesser than 50N. Due to the influence of the body deformation the contact forces 
of each spring is influenced by the forces of all other springs. Related design 
parameters are the geometry parameters of the springs, as shown in figure 5.  To 
solve this kind of design problem the deterministic optimization could be used but 
the reliability of the connector element is determined by the influence of the un-
certainty of the geometry. To prove the reliability of the initial design we used the 
robustness analysis to estimate the sigma level. And the robust design optimiza-
tion is used to increase the reliability to achieve six sigma design. 

4.2 Model description 
The ProE-model of MCon63 with full parametric definition of contact spring is 
given in Figure 4. 
 

 
Figure 4: ProE CAD model of  MCon63 
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Figure 5: ProE CAD with 36 defined geometric parameters. 

 
In sketch of CAD-model in Figure 5 all parameters of influence on gape size and 
spring alignment to body are defined.  
 
 

4.3 Design parameters and uncertainties 
The design parameters P1…P36 are used for description of the uncertainties of the 
input parameter in geometry. All parameters are independent to each other in wide 
range and therefore also geometry is changeable. Definition of parameters in 
sketch must obtain that all parameters are changeable in wide range without any 
errors in CAD-Model. 
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Figure 6: ANSYS Workbench model with 10 response 
parameters of the contact forces. 
 

 
Figure 7: ANSYS Workbench finite element model with 
35.000 nodes. 

 

Figure 8: Defined input and 
output parameters. 

 

4.4 Results of the robust design optimization 

4.4.1 Evaluate the robustness of the initial design 
The first most important step for a successful and efficient optimization procedure 
is to evaluate the robustness of the initial design. Introducing the given uncertain-
ties of the n=31 important random parameters, as shown in figure 8, the Latin 
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Hypercube sampling with N=90 design evaluations in parallel gives the scatter of 
all performance relevant response parameters, as shown in figure 9. In this figure 
a relative large number of design evaluations fail cause the contact force F3o_v is 
equal to zero. The statistic of the response parameters samples can be explained 
by the histogram of the response parameters. Figure 11 shows the histogram of the 
critical contact force F3o_v with the limit state condition for the contact force is 
1N, including the numerical outliers. 

The estimation of the failure probability using the distribution fit in fig-
ure 12 gives an unacceptable value of 89% for violating the limit state condition.  

The matrix of the linear coefficients of correlation in figure 14 shows only 
few input parameters for each contact force which have a strong linear correlation. 
The matrix shows only the statistical significant correlations which are greater 
than the statistical error of the simulated correlation of the input parameters. The 
confidence levels of the coefficients of correlation 0.5 and 0.7 show the possibility 
to reduce the necessary number of design evaluation for the next robustness 
evaluations.  

The coefficients of importance (COI) can be used to detect multivariate 
significant input parameters. Figure 13 shows e.g. all COI for the critical output 
F3o_v. Whereby the most important parameters are lo3_y1 and lo3_y2. The 
adjusted value of R2 gives the amount of variance of F3o_v that can explained by 
a linear regression model including all significant input parameters and gives the 
optimization potential within the given design parameter boundaries.  
 
 

 
Figure 9: User-defined random parameters to evaluate the robustness and to estimate the failure 
rate of the initial design. 
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Figure 10: Activated n = 15 most important CAD design parameters for the first deterministic 
optimization using the adaptive response surface method. 
 
 

Figure 11: Anthill plot of the contact force scatter of 
F3o_v with the largest value and numerical out-
liers.  

Figure 12: Histogram of the critical contact 
force F3o_v with fitted distribution function 
(PDF) of the contact force F3o_v. The esti-
mated failure probability is inside of 89% 
(based on the PDF) and 87% (based on the 
histogram). 
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Figure 13: Coefficients of importance to detect multivariate significant input parameters e.g. for 
the critical output F3o_v. The adjusted value of R2 gives the amount of variance of F3o_v that 
can explained by a linear regression model including all significant input parameters. 
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Figure 14: Matrix of the linear coefficients of correlation of the first robustness evaluation. The 
values in the brackets give the confidence level of the coefficients of correlation. The matrix 
shows only the statistical significant correlations which are greater than the statistical error of the 
simulated correlation of the input parameters. 

4.4.2 Deterministic optimization of the initial design 
Furthermore, the multivariate statistic can be used to get the most sensitive design 
and random parameters to increase reliability and the sigma level using the robust 
design optimization within a further step. An overview of all most important input 
parameters is given in Figure 10. As a result of the multivariate statistic the opti-
mization problem can be reduced to n = 15 design parameters. So it is possible to 
use highly efficient adaptive response surface methods to maximize the distance 
between the mean value of the contact forces and the limit state condition of the 
critical contact force of  1N.  

Whereby the target distance has to be greater than 4.5 times the current 
standard deviation of the contact force to estimate a failure probability of 3.4 out 
of 1 million with the assumption of normal distributed contact forces and constant 
standard deviations during the optimization process. Of course, this is only a 
rough estimation within a six sigma concept and a reliability analysis of the final 
design is recommended.  
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Figure 15: Objective function definition as a weighted minimal distance approach with respect to 
the 10 contact force limits of 1N. The target contact forces are result from six sigma estimation 
based on the means and standard deviations of the assigned histograms (e.g. the histogram of the 
critical contact force of the figure 23). 

 
Figure 15 shows the minimal distance function approach to define a weighted 
objective function to ensure an adequate distance of the mean values with respect 
to the limit contact force of 1N. The distance depends on the means and standard 
deviations of the current iteration. First, we used a very efficient adaptive re-
sponse surface approach to get a pre-optimized design with a very small number 
of design evaluations of N=126. The adaptive D-optimal design of experiment is 
shown in figure 16. 
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Figure 16: Visualization of the objective function in the two-dimensional subspace. After the 5th 
adaption of the D-optimal design of experiment the optimization process ends with a stagnation of 
the objective improvement with the best design 126. The calculation time amounts 25 hours on 8 
Xeon 2.66 GHz CPUs. 
 
However, after the 5th adaption of the design of experiment a stagnation of the 
objective improvement appears (as shown in figure 16) as a result of using the 
objective terms to shift the mean values instead using of constraints. In particular 
the performance critical contact force is F3o_v has to be formulated as a restric-
tion. For this kind of problems it is recommended to search for feasible designs 
introducing restrictions with respect to the contact force limitations in combina-
tion with an evolutionary global search strategy.  
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Figure 17: Definition of the constraints to obtain a feasible start design for the next optimization 
step. 
 
Whereby the sum of the contact force is defined as an additional restriction and 
has to be lesser than 50N, as shown in figure 17.  
 

 
Figure 18: History of the objective convergence of the global evolutionary search strategy with 
N=391 parallel finite element calculation and a calculation time of 80 hours. The slow conver-
gence is a result of the global  feasible search strategy to satisfy the contact force restrictions. 
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Figure 19: History of the objective convergence of the local design improvement using an 
adaptive D-optimal design of experiment in combination with ARSM with N=172 parallel finite 
element calculation and a calculation time of 35 hours. 
 
 

Figure 20: Mean values of the contact forces as 
a result of the global feasible design search. The 
mean value of the performance critical contact 
force F3o_v increases. 

 

Figure 21: The mean value of the non-critical 
contact force F2o_h decreases during the local 
design improvement using ARSM. 
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The global search evolutionary optimization is based on the best design of the first 
global ARSM optimization and needs 391 parallel finite element calculations to 
obtain a feasible start design in the total design space with n=30 design parame-
ters, as shown in figure 18. In figure 20, the resulting mean values of the contact 
forces show an increasing of the critical contact force F3o_v but a decreasing of 
the mean value of F2o_h. A local (the start range takes 20% of the total design 
space) design improvement with the objective convergence a shown in figure 19 
using an adaptive D-optimal design of experiment in combination with adaptive 
response surfaces increases the mean of the force F2o_h to an acceptable com-
promise result as shown in figure 21. As a result of the three deterministic 
optimization steps the mean values of all contact forces do not violate the limit 
state of 1N. 
 

 
Figure 22: Histogram with fitted distribution 
function (PDF) of the contact force F2o_h. The 
estimated failure probability is inside of 1% 
(based on the PDF) and 2% (based on the histo-
gram).  

 
Figure 23: Histogram with fitted distribution 
function (PDF) of the contact force F3o_v. 
The estimated failure probability is inside of 
9% (based on the PDF) and 8% (based on the 
histogram). 

 

4.4.3 Evaluate the robustness of the optimized design 
The third step within an iterative stepwise robust design optimization is to evalu-
ate the robustness of the current optimal design. Introducing the given 
uncertainties of the n=36 CAD parameters an advanced Latin Hypercube sam-
pling with N=50 design evaluations is used to prove the robustness of the 
structural system by means of the target distance of the mean values of the contact 
forces to the limit state condition of 1N.  
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Figure 24: n=12 most sensitive parameters with a large coefficient of importance of the contact 
forces. 
 
The required distance depends on the current standard deviation of the contact 
force to estimate a failure probability less than 10%. The figures 22 and 23 show 
the contact forces with the largest failure probabilities up to 9%, which is less than 
the failure probability 89% of the initial design (see figure 12). In addition, nu-
merical outliers are not longer available for the optimized design.  

An additional result of the global variance-based sensitivity study is the 
identification of the most significant parameters of the random variables due to 
important model response contact forces. Figure 24 shows the most important 
n=12 out of 36 CAD parameters which have a large influence of the variance of 
the contact forces. 
 

4.4.4 Reliability analysis of the optimized design 
In the previous section the estimation of the failure probability is based on a fit-
ting of the histogram with a probability density function using N=50 samples 
(design evaluations). Of course, this is only a rough estimation within a six sigma 
concept and a reliability analysis of the final design is recommended, especially 
for small probability levels less than 4.5% or a sigma level greater than 2.  

With the identification of the random sub domain (see figure 25) a very ef-
ficient adaptive approximation methods can be used for reliability analysis (Roos 
et al. (2006)). Whereby, the failure state is defined by means of a critical number 
of contacts which have a contact force less than 1N. In our case this is given in 
case of more than 50% of the contacts of the electronic connector. 
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Figure 25: N=137 D-optimal design of experiment support points and a moving least square 
approximation of the state function g(X) > 5.  
 

 
Figure 26: Adaptive sampling on the approximation of the state function without samples in the 
unsafe domain and a failure probability near zero. 
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For the optimized design the adaptive response surface method is based on N=137 
design evaluations of a D-optimal design of experiment, as shown in figure 25. 
The adaptive sampling procedure in figure 26 on the surrogate model does not 
detect samples in the unsafe domain. This means that the failure probability is 
numerically zero. So it is proven that the optimized design is a so called Six 
Sigma Design. 

 

5 Summary 

Robust design optimization can provide multiple benefits. It permits the identifi-
cation of those design parameters that are critical for the achievement of a certain 
performance characteristic. A proper adjustment of the thus identified parameters 
to hit the target performance is supported. This can significantly reduce product 
costs. The effect of variations on the product behaviour and performance can be 
quantified. Moreover, robust design optimization can lead to a deeper understand-
ing of the potential sources of variations. Hence, a minimization of the effect of 
variations (noise) is made possible, and appropriate steps to desensitize the design 
to these variations can be determined. Consequently, more robust and affordable 
product designs can be achieved.  
 For the presented variance and probability-based robust design optimiza-
tion of the electronic connector with in total n=36 random CAD parameters the 
resulting system failure probability could be reduced to zero. Additional result of 
the optimization procedure is a Six Sigma Design without numerical outliers. In 
summary, N=950 parallel finite element calculations are needed with a total calcu-
lation time of 1 week on 8 Xeon 2.66 GHz CPUs. In this sense, the provided 
successive robust design optimization approach is applicable for Design for Six 
Sigma Analysis of real world applications with highly efficiency. 
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ABOUT TYCO ELECTRONICS 
Tyco Electronics Ltd. is a leading global provider of engineered electronic components, 
network solutions, specialty products and undersea telecommunication systems, with 
fiscal 2009 sales of US$10.3 billion to customers in more than 150 countries. We design, 
manufacture and market products for customers in a broad array of industries including 
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tions; aerospace, defense and marine; medical; energy; and lighting. With approximately 
7,000 engineers and worldwide manufacturing, sales and customer service capabilities, 
Tyco Electronics' commitment is our customers' advantage. More information on Tyco 
Electronics can be found at http://www.tycoelectronics.com/. 
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to the information at any time. Tyco Electronics expressly disclaims any implied warranty 
regarding the information contained herein, including, but not limited to, the implied 
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damages arising from or in connection with, including, but not limited to, the sale, resale, 
use or misuse of its products. Users should rely on their own judgment to evaluate the 
suitability of a product for a certain purpose and test each product for its intended applica-
tion.  
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