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Abstract: Reliability of portable devices becomes a serious issue as complexity of the devices 
grows and miniaturization trend continues. In case of dynamic applications durability against 
impact on hard surfaces is a standard requirement for mobile electronic devices, verified in drop 
tests. Computer Aided Engineering (CAE) methods and tools are used as means to accelerate the 
overall design cycle and to reduce time to market. In case of drop test simulations it is an 
important task to assess quality of simulation models and effect of different input parameters on 
results. Strong nonlinearities (contact, material, geometric) and large number of parameters 
involved make such sensitivity studies more difficult. It is also necessary to include effect of 
stochastic nature of input parameters which requires a robustness evaluation of the simulation 
models.  This paper describes first results of a research project on development of an automated 
procedure of sensitivity analysis and robustness evaluation of product level simulation models 
used for drop test simulation. Several goals have been pursued with development of the 
methodology: to estimate the scatter of important design responses, to find out the most important 
input variables affecting important design responses both in sensitivity and robustness evaluation 
studies; investigate quality of simulation models in terms of explainability of the response scatter 
with correlations to scattering input variables. First results of the sensitivity and robustness 
evaluation studies have shown that the methodology can be used by Nokia at the product level. 
Additional verification with test results is required.  

Keywords: Drop Test Simulation, Sensitivity Study, DOE, Robustness Evaluation, Stochastic 
Analysis 

1. Introduction 

Reliability of portable devices becomes a serious issue as complexity of the devices grows and 
miniaturization trend continues.  Virtual prototyping helps companies like NOKIA to reduce the 
overall design cycle and time to market. There is a strong pressure to reduce number of physical 
tests and to rely more on results of simulation. In case of dynamic applications durability against 
impact on hard surfaces is a standard requirement for mobile electronic devices, verified in drop 
tests. Computer Aided Engineering (CAE) methods and tools are used during all phases of design 
as means to accelerate and shorten the design cycle. In case of drop test simulations it is an 
important task to assess the quality of simulation models and the effect of different input 
parameters on results. Strong nonlinearities (contact, material, geometric) and a large number of 
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parameters involved make such sensitivity studies more difficult. Stochastic variation of input 
parameters like material properties, parts thicknesses, load cases, etc can significantly affect 
results of simulations, obtained at nominal values of input parameters. This problem can be 
tackled using a robustness evaluation (Will, 2007). 
 

2. Robust Design Process for Nokia Drop Test Applications 

As a first step a numerical sensitivity analysis against variation of drop test setup (drop angle) as 
well as variation in design parameters (material, geometry,..) are carried out,  with the following 
objectives: 

• determine "worst case" drop test orientations;  
• evaluate most efficient optimization variables to influence important response values; 
• estimate optimization potential to allow effective, specific tuning of the design by 

simulation-based optimization algorithms.  
In the second step, the robustness evaluation is made in order to check the sensitivity of the 
product performance at critical drop test position against material scatter and production tolerances 
as well as small deviations in drop positions. With the estimation of scatter, quantity safety 
margins can be extracted and implemented in the design process to ensure robust structures. 
For drop tests, the orientation of the device at the moment of impact is crucial for the loading on 
the device after impact. Therefore it was required to identify those drop orientations which lead to 
high loading in different parts of the phone. Based on experience, the critical range for the 
orientation was selected to vary around the horizontal position with angles of ±10° about the  
longitudinal and the transverse axis of the phone. To identify the worst case drop position in the 
first sensitivity study the drop angles as well as all design parameters available for optimizing the 
design are varied.  After detecting the most critical orientation, further sensitivity analyses were 
set up without variation of the drop angles, in order to quantify the influence of design parameters 
at this “worst case” orientation. 
By use of the identified “worst case” orientation, the sensitivity of important design responses for 
this drop direction needs to be determined to carry out a robustness evaluation which allows  to 
check the sensitivity against manufacturing tolerances, material scatter and scatter sources.  
During sensitivity analysis and robustness evaluation a large number of designs are evaluated. 
Therefore the whole process is automated and integrated into optiSLang, which drives the 
sensitivity analysis and robustness evaluation. The process automation is shown in Figure 2. Due 
to the high number of analyses the result extraction process was significantly accelerated by use of 
Python scripts for the automatic extraction of the essential results.  



2010 SIMULIA Customer Conference 3

Figure 1. Example for drop test configurations, drop with phone inclined about 
“angle x” (left), “angle y” (right). 

Figure 2. Process automation. 

 

3. Statistical Measures to Evaluate Design Spaces 

 
For the evaluation of statistical design spaces, there are different measures with graphical 
representations available: 

• Histogram: Investigation of response variation and limit violation probability. 
• Coefficient of Determination (CoD), Coefficient of Importance (CoI): What 

proportion of the variation of a response is explainable by linear, quadratic and 
monotonic non-linear (Spearman) correlations to the input parameters? 

• Anthill-Plot: 2D representation of a pair wise relation between inputs and responses. 
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a) 

 b) c)   

Figure 3. Statistical measures to evaluate design spaces: 

 a) histogram, b) Coefficient of Importance (CoI) graph, c) anthill plot. 
 

Further, Coefficient of Prognosis (CoP) is of interest (Figure 4). It is applied to predict what 
proportion of the variation of a response can be forecasted with identified arbitrary non-linear 
correlations to the input parameters. In contrast to CoD and CoI the Coefficient of Prognosis 
checks the forecast quality at an independent sample test set. It has three benefits: 
• reduce the variable space with different filter  

� best subspace 
• check multiple non-linear correlations by checking multiple MLS/polynomial regression  

� best Meta Model 
• split sample set and check forecast (prognosis) quality at the test samples  

� Metamodel of optimized Prognosis (MoP) 
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Find more details to the statistical measurements of sensitivity analysis in (Will, 2009). 

Figure 4. Coefficient of Prognosis (CoP) for the phone drop simulation. 

4. Sensitivity Analysis: Drop Test of a Mobile Phone 

To identify the most critical drop test position and for better understanding of the influence of the 
selected design parameters on the results, a sensitivity study was carried out in the first step. The 
sensitivity study aims to investigate how the variation of test setup and design parameters will 
affect the output responses.  
For the study, the optimization software optiSLang, Version 3.0.0 is applied (Dynardo, 2010). 51 
design parameters were selected, including geometric dimensions, material and friction 
parameters. A range of orientation angles which define orientation of a phone related to a rigid 
surface have been selected to study effect of clattering. Several previous internal and external 
studies like (Goyal, 1998), (Shan, 2006) have shown that clattering has an important effect on 
performance of portable devices in drop tests. One of the tasks of the study was to quantify the 
effect.  
An effective method to investigate the parameter range for all 51 input parameters is Latin 
Hypercube Sampling (LHS). By this method, a statistically representative result of response 
scatter for the complete parameter space of a high number of input parameters can be produced by 
a relatively small number of samples. Each input parameter range is divided into N intervals with 
equal probability and from each interval one random value is used for one sample set of 
parameters. By combining these parameter values, N different samples are generated. This method 
provides a good representation of the real variability in the randomly selected samples. Of course 
beside the response scatter the correlations to the scattering input variables are of interest. 
Therefore the necessary number of samples is depending on the number of important scattering 
variables as well as on the nonlinearity of the design responses. To minimize the necessary 
amount of samples we use input correlation error minimized Latin Hypercube sampling, 
significance filter and CoD, CoI and CoP values. We decided to start with 100 samples, thus 100 
variants of the FEM model were created. It could be shown that 100 simulations are good to 
estimate variation, correlation and explainability for the mobile phone drop test simulation. 
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The statistical analysis of the results included the variation of responses, linear, quadratic and 
monotonic non-linear correlation between input and output. Further, the coefficients of 
determination, importance and prognosis were determined; the latter two are measures in 
optiSLang to quantify the amount of explainable scatter. As an additional value with estimation 
how much scatter can be explained we estimate the scatter which can not be explained. The 
amount of unexplained scatter most likely results from numerical noise or from the procedure how 
the result values are extracted and is an important measure for the quality of the simulation model 
and for that of post-processing as well.  
The example in Figure 5 shows CoI and anthill plot of the most important correlation for the front 
side drop, here it was found that angle x is most significant within the parameter range between -
10° and 10°. A second analysis with fixed drop angle x of 3° showed that the mass density of the 
battery and the thickness of the UI shield (a metal sheet near the display) are the most important 
design parameters at worst case drop test position. 
 

Figure 5. Example: sensitivity of stress maxima in the rear glass panel of the 
display (angle x between -10° and 10°). 
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Figure 6. Sensitivity of rear glass stress for the “worst case” orientation (equal 
drop orientation for all simulations). 

In Figure 6, the evaluation for one fix drop orientation is shown. The display stress in rear glass 
panel shows a variation between 61 and 202 MPa, the maximum CoD is 71%. The mass (mass 
density) of the battery (variable DENS_battery) has the most significant influence on the stress in 
the rear glass of the display. 
The sensitivity result for orientation angles (impact point and direction) indicates high probability 
that the highest stress in the display glass occurs in drop cases on one front corner at angles of 2 ... 
6 °. Critical design load cases for the glass component lie in this range. Within the investigated 
design modifications, battery weight and UI-shield thickness are the most effective design 
parameters to reduce glass loading. 
 

5. Robustness Evaluation 

A robustness evaluation is a so-called global variance-based stochastic analysis which addresses 
the question how much the response values scatter under the consideration of input parameter 
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scatter. The input scatter is defined by different types of distributions i.e. uniform, normal and 
truncated normal. Besides the response variation the correlation between input and output scatter 
is investigated. The process automation workflow is presented in Figure 4. Robustness evaluation 
was conducted in order to check sensitivity of product performance against material scatter and 
production tolerances as well as small deviations in drop positions. With the estimation of scatter 
quantity safety margins can be extracted and implemented in the deterministic design process to 
ensure robust structures. 

 
Figure 7. Robustness evaluation workflow. 

 

209 scattering input parameters were selected, taking into account results of the sensitivity study, 
lower and upper bounds of the orientation angles angle x and angle y were defined in the ranges of 
[-1°,1°] and  [-1°, 1°] respectively. Other input parameters included geometric dimensions (shell 
thicknesses), material properties (linear and nonlinear) and friction parameters. 36 outputs 
parameters were defined and Latin Hypercube Sampling (LHS) was selected with 150 designs. 
Statistical post-processing of the 36 output parameters included variation of the responses, 
coefficient of determination/importance, checking linear and non-linear correlation, coefficient of 
prognosis.  
 

Run the 
robustness 
analysis in 
optiSLang. 

Run the abql Python 
script during the 
robustness analysis 
which creates *.csv files 
containing the results. 

Run the robusteval Python 
script after the robustness 
analysis is finished. All the 
designs are processed and 
*.rpt files are created. 

Post 
processing 
in 
optiSLang. 
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Figure 8. Post-Processing Robustness Evaluation of Drop Test Simulation. 
 

An example of statistical post-processing which was done for each output parameter is shown in 
Figure 8. The histogram on the left side shows a variation between 45.35 and 121.1 MPa. The 
probability of violating the limit is 9.33 % (1-0.9067=0.0933). Maximum CoP is 66 %, inputs 
angle y and angle x have the most significant influence. Comparison between the CoI and CoP 
clearly show the difference between those two measurements of correlation.  The very nonlinear 
correlation due to variation in x-angle (which was already shown in the sensitivity analysis) 
cannot be identified with linear, quadratic and monotonic nonlinear correlation which is used at 
the CoI. Only the arbitrary nonlinear correlation capabilities of CoP identify and quantify that 
correlation. Anthill (scatter) plots were used to study 2D representation of a pair wise relation 
between inputs and responses, as shown in Figure 9.   
Of course, evaluation of 36 important design response values may not be the full picture in terms 
of design robustness. Maybe some other locations which are not properly treated by the result 
extraction of 36 scalar values show critical values within the scatter range. To address that issue it 
becomes necessary to project statistical values of variation onto the finite element discretization 
level. Than we have a full picture of variation at every finite element and can check hot spot 
locations for critical loading. That post-processing capability is addressed with the software tool  
Statistics on Structure (SoS). Therefore the Abaqus results for the most important design parts are 
extracted and imported and post processed in SoS. At the element level then hot spots of variation 
can be identified and the correlation analysis for hot spot elements can be performed. Figure 10 
shows the variation of stresses at a glass component in the 150 design evaluations. Two hot spot 
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areas of peak stress can be located and using optiSLang the correlation analysis at hot spot element 
level is performed. The CoP values show explainability values over 80%, which mean the 
variation can be explained very well and the scatter of the drop angels (+-1°) is dominating the 
stress scatter. All other scattering variables have no influence on the stress scatter at the glass 
component. 
Therefore it could be shown that projection of statistical values adds significant benefits to the 
post processing capabilities of robustness evaluation: 
- Visualization of min/max and scatter range on FE structure. 
- Visualization of spatial distribution of variation and correlation on FE structure. 
- Selecting and visualizing important regions and calculation of their correlations. 

Figure 9. Example of an Anthill (scatter) plot. 

 
Figure 10. Statistics on structure. 

Structure in 
ABAQUS 
viewer 

Element sets – all glass 
element sets
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6. Conclusions 

Sensitivity study and robustness evaluation have been conducted for a typical simulation model at 
product level complexity. The number of input parameters in the sensitivity study included drop 
test position and all possible design parameters which were of interest for designers in order to 
estimate their relative importance. We can conclude that it is possible to use such sensitivity 
studies to identify design drop positions and main design parameters to optimize the structure. As 
an example, interesting results have been obtained for display glass. The sensitivity study indicates 
high probability that the highest stress in the display glass occurs in drop cases on one front corner 
for drop orientation angles of 2 ... 6 °. Critical design load cases for the glass could be identified. 
Within the investigated design modifications, battery weight and UI-shield thickness are the most 
effective design variables to reduce glass loading. 
Robustness evaluation at a drop angle of 0° shows very small influences of manufacturing 
tolerances or material scatter on the maxima of glass loading compared to small deviations of the 
drop angle (+-1° ). Therefore the main task of improvement (more robust design) is to reduce glass 
loading sensitivity to drop position. The safety margin due to deviation of worst case drop 
positions can be extracted and compared to safety margins which are used today in the virtual 
design process from scatter estimations of robustness evaluation. That is a very efficient method in 
order to avoid over-engineering by using too large safety margins and on the other hand to avoid 
robustness problems by using too small safety margins. 
For a robust design of mobile devices sensitivity and robustness studies can provide an extended 
insight into the complex non-linear nature of the reliability against mechanical loading. At the 
current state-of-the-art in numerical simulation and with current simulation hard- and software it is 
feasible to perform such types of investigations. Due to fast increase in hardware and software 
performance, FEM analyses can go to the next level today: statistically relevant numerical 
analyses with a sufficient number of design simulations. The simulation time for a corner drop test 
of a mobile phone has been reduced significantly in the last 5 years. Due to this development, 
developers of complex, mechanically sensitive devices can benefit from software like optiSLang 
or Statistics on Structure to evaluate the reliability of their products.  
Further improvement of model parametric, hardware and numerical methods will allow 
introducing the assessment of tolerances in material parameters and geometry in numerical 
simulations of mechanical performance as a standard. This development is very beneficial to 
increase the quality and reliability of electronic consumer products via virtual prototyping.  
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