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Abstract: Reliability of portable devices becomes a serious issue as complexity of the devices
grows and miniaturization trend continues. In case of dynamic applications durability against
impact on hard surfaces is a standard requirement for mobile electronic devices, verified in drop
tests. Computer Aided Engineering (CAE) methods and tools are used as means to accelerate the
overall design cycle and to reduce time to market. In case of drop test simulations it is an
important task to assess quality of simulation models and effect of different input parameters on
results. Strong nonlinearities (contact, material, geometric) and large number of parameters
involved make such sensitivity studies more difficult. It is also necessary to include effect of
stochastic nature of input parameters which requires a robustness evaluation of the simulation
models. This paper describes first results of a research project on development of an automated
procedure of sensitivity analysis and robustness evaluation of product level simulation models
used for drop test simulation. Several goals have been pursued with development of the
methodology: to estimate the scatter of important design responses, to find out the most important
input variables affecting important design responses both in sensitivity and robustness evaluation
studies; investigate quality of simulation models in terms of explainability of the response scatter
with correlations to scattering input variables. First results of the sensitivity and robustness
evaluation studies have shown that the methodology can be used by Nokia at the product level.
Additional verification with test results is required.

Keywords: Drop Test Simulation, Sensitivity Study, DOE, Robustness Evaluation, Stochastic
Analysis

1. Introduction

Reliability of portable devices becomes a serious issue as complexity of the devices grows and
miniaturization trend continues. Virtual prototyping helps companies like NOKIA to reduce the
overall design cycle and time to market. There is a strong pressure to reduce number of physical
tests and to rely more on results of simulation. In case of dynamic applications durability against
impact on hard surfaces is a standard requirement for mobile electronic devices, verified in drop
tests. Computer Aided Engineering (CAE) methods and tools are used during all phases of design
as means to accelerate and shorten the design cycle. In case of drop test simulations it is an
important task to assess the quality of simulation models and the effect of different input
parameters on results. Strong nonlinearities (contact, material, geometric) and a large number of
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parameters involved make such sensitivity studies more difficult. Stochastic variation of input
parameters like material properties, parts thicknesses, load cases, etc can significantly affect
results of simulations, obtained at nominal values of input parameters. This problem can be
tackled using a robustness evaluation (Will, 2007).

2. Robust Design Process for Nokia Drop Test Applications

As a first step a numerical sensitivity analysis against variation of drop test setup (drop angle) as
well as variation in design parameters (material, geometry,..) are carried out, with the following
objectives:

e determine "worst case" drop test orientations;
*  evaluate most efficient optimization variables to influence important response values;

e estimate optimization potential to allow effective, specific tuning of the design by
simulation-based optimization algorithms.

In the second step, the robustness evaluation is made in order to check the sensitivity of the
product performance at critical drop test position against material scatter and production tolerances
as well as small deviations in drop positions. With the estimation of scatter, quantity safety
margins can be extracted and implemented in the design process to ensure robust structures.

For drop tests, the orientation of the device at the moment of impact is crucial for the loading on
the device after impact. Therefore it was required to identify those drop orientations which lead to
high loading in different parts of the phone. Based on experience, the critical range for the
orientation was selected to vary around the horizontal position with angles of £10° about the
longitudinal and the transverse axis of the phone. To identify the worst case drop position in the
first sensitivity study the drop angles as well as all design parameters available for optimizing the
design are varied. After detecting the most critical orientation, further sensitivity analyses were
set up without variation of the drop angles, in order to quantify the influence of design parameters
at this “worst case” orientation.

By use of the identified “worst case” orientation, the sensitivity of important design responses for
this drop direction needs to be determined to carry out a robustness evaluation which allows to
check the sensitivity against manufacturing tolerances, material scatter and scatter sources.

During sensitivity analysis and robustness evaluation a large number of designs are evaluated.
Therefore the whole process is automated and integrated into optiSLang, which drives the
sensitivity analysis and robustness evaluation. The process automation is shown in Figure 2. Due
to the high number of analyses the result extraction process was significantly accelerated by use of
Python scripts for the automatic extraction of the essential results.
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Figure 1. Example for drop test configurations, drop with phone inclined about
“angle x” (left), “angle y” (right).
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Figure 2. Process automation.

3. Statistical Measures to Evaluate Design Spaces

For the evaluation of statistical design spaces, there are different measures with graphical
representations available:

e Histogram: Investigation of response variation and limit violation probability.

e Coefficient of Determination (CoD), Coefficient of Importance (Col): What
proportion of the variation of a response is explainable by linear, quadratic and
monotonic non-linear (Spearman) correlations to the input parameters?

e Anthill-Plot: 2D representation of a pair wise relation between inputs and responses.
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Figure 3. Statistical measures to evaluate design spaces:

a) histogram, b) Coefficient of Importance (Col) graph, c) anthill plot.

Further, Coefficient of Prognosis (CoP) is of interest (Figure 4). It is applied to predict what
proportion of the variation of a response can be forecasted with identified arbitrary non-linear
correlations to the input parameters. In contrast to CoD and Col the Coefficient of Prognosis
checks the forecast quality at an independent sample test set. It has three benefits:

reduce the variable space with different filter

=> best subspace

check multiple non-linear correlations by checking multiple MLS/polynomial regression

=> best Meta Model

split sample set and check forecast (prognosis) quality at the test samples
= Metamodel of optimized Prognosis (MoP)

2010 SIMULIA Customer Conference



Find more details to the statistical measurements of sensitivity analysis in (Will, 2009).
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Figure 4. Coefficient of Prognosis (CoP) for the phone drop simulation.

4. Sensitivity Analysis: Drop Test of a Mobile Phone

To identify the most critical drop test position and for better understanding of the influence of the
selected design parameters on the results, a sensitivity study was carried out in the first step. The
sensitivity study aims to investigate how the variation of test setup and design parameters will
affect the output responses.

For the study, the optimization software optiSLang, Version 3.0.0 is applied (Dynardo, 2010). 51
design parameters were selected, including geometric dimensions, material and friction
parameters. A range of orientation angles which define orientation of a phone related to a rigid
surface have been selected to study effect of clattering. Several previous internal and external
studies like (Goyal, 1998), (Shan, 2006) have shown that clattering has an important effect on
performance of portable devices in drop tests. One of the tasks of the study was to quantify the
effect.

An effective method to investigate the parameter range for all 51 input parameters is Latin
Hypercube Sampling (LHS). By this method, a statistically representative result of response
scatter for the complete parameter space of a high number of input parameters can be produced by
a relatively small number of samples. Each input parameter range is divided into N intervals with
equal probability and from each interval one random value is used for one sample set of
parameters. By combining these parameter values, N different samples are generated. This method
provides a good representation of the real variability in the randomly selected samples. Of course
beside the response scatter the correlations to the scattering input variables are of interest.
Therefore the necessary number of samples is depending on the number of important scattering
variables as well as on the nonlinearity of the design responses. To minimize the necessary
amount of samples we use input correlation error minimized Latin Hypercube sampling,
significance filter and CoD, Col and CoP values. We decided to start with 100 samples, thus 100
variants of the FEM model were created. It could be shown that 100 simulations are good to
estimate variation, correlation and explainability for the mobile phone drop test simulation.
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The statistical analysis of the results included the variation of responses, linear, quadratic and
monotonic non-linear correlation between input and output. Further, the coefficients of
determination, importance and prognosis were determined; the latter two are measures in
optiSLang to quantify the amount of explainable scatter. As an additional value with estimation
how much scatter can be explained we estimate the scatter which can not be explained. The
amount of unexplained scatter most likely results from numerical noise or from the procedure how
the result values are extracted and is an important measure for the quality of the simulation model
and for that of post-processing as well.

The example in Figure 5 shows Col and anthill plot of the most important correlation for the front
side drop, here it was found that angle x is most significant within the parameter range between -
10° and 10°. A second analysis with fixed drop angle x of 3° showed that the mass density of the
battery and the thickness of the UI shield (a metal sheet near the display) are the most important
design parameters at worst case drop test position.
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Figure 5. Example: sensitivity of stress maxima in the rear glass panel of the
display (angle x between -10° and 10°).
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Figure 6. Sensitivity of rear glass stress for the “worst case” orientation (equal
drop orientation for all simulations).

In Figure 6, the evaluation for one fix drop orientation is shown. The display stress in rear glass
panel shows a variation between 61 and 202 MPa, the maximum CoD is 71%. The mass (mass
density) of the battery (variable DENS_battery) has the most significant influence on the stress in
the rear glass of the display.

The sensitivity result for orientation angles (impact point and direction) indicates high probability
that the highest stress in the display glass occurs in drop cases on one front corner at angles of 2 ...
6 °. Critical design load cases for the glass component lie in this range. Within the investigated
design modifications, battery weight and Ul-shield thickness are the most effective design
parameters to reduce glass loading.

5. Robustness Evaluation

A robustness evaluation is a so-called global variance-based stochastic analysis which addresses
the question how much the response values scatter under the consideration of input parameter
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scatter. The input scatter is defined by different types of distributions i.e. uniform, normal and
truncated normal. Besides the response variation the correlation between input and output scatter
is investigated. The process automation workflow is presented in Figure 4. Robustness evaluation
was conducted in order to check sensitivity of product performance against material scatter and
production tolerances as well as small deviations in drop positions. With the estimation of scatter
quantity safety margins can be extracted and implemented in the deterministic design process to
ensure robust structures.

Run the abg/ Python

Run the script during the
robustness robustness analysis
analysis in which creates *.csv files
optiSLang. containing the results.

Run the robusteval Python
script after the robustness

Post
; analysis is finished. All the
processing .
i designs are processed and
- .
optiSLang. .rpt files are created.

Figure 7. Robustness evaluation workflow.

209 scattering input parameters were selected, taking into account results of the sensitivity study,
lower and upper bounds of the orientation angles angle x and angle y were defined in the ranges of
[-1°,1°] and [-1°, 1°] respectively. Other input parameters included geometric dimensions (shell
thicknesses), material properties (linear and nonlinear) and friction parameters. 36 outputs
parameters were defined and Latin Hypercube Sampling (LHS) was selected with 150 designs.
Statistical post-processing of the 36 output parameters included variation of the responses,
coefficient of determination/importance, checking linear and non-linear correlation, coefficient of
prognosis.
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Figure 8. Post-Processing Robustness Evaluation of Drop Test Simulation.

An example of statistical post-processing which was done for each output parameter is shown in
Figure 8. The histogram on the left side shows a variation between 45.35 and 121.1 MPa. The
probability of violating the limit is 9.33 % (1-0.9067=0.0933). Maximum CoP is 66 %, inputs
angle y and angle x have the most significant influence. Comparison between the Col and CoP
clearly show the difference between those two measurements of correlation. The very nonlinear
correlation due to variation in x-angle (which was already shown in the sensitivity analysis)
cannot be identified with linear, quadratic and monotonic nonlinear correlation which is used at
the Col. Only the arbitrary nonlinear correlation capabilities of CoP identify and quantify that
correlation. Anthill (scatter) plots were used to study 2D representation of a pair wise relation
between inputs and responses, as shown in Figure 9.

Of course, evaluation of 36 important design response values may not be the full picture in terms
of design robustness. Maybe some other locations which are not properly treated by the result
extraction of 36 scalar values show critical values within the scatter range. To address that issue it
becomes necessary to project statistical values of variation onto the finite element discretization
level. Than we have a full picture of variation at every finite element and can check hot spot
locations for critical loading. That post-processing capability is addressed with the software tool
Statistics on Structure (SoS). Therefore the Abaqus results for the most important design parts are
extracted and imported and post processed in SoS. At the element level then hot spots of variation
can be identified and the correlation analysis for hot spot elements can be performed. Figure 10
shows the variation of stresses at a glass component in the 150 design evaluations. Two hot spot
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areas of peak stress can be located and using optiSLang the correlation analysis at hot spot element
level is performed. The CoP values show explainability values over 80%, which mean the
variation can be explained very well and the scatter of the drop angels (+-1°) is dominating the
stress scatter. All other scattering variables have no influence on the stress scatter at the glass

component.

Therefore it could be shown that projection of statistical values adds significant benefits to the
post processing capabilities of robustness evaluation:

- Visualization of min/max and scatter range on FE structure.

- Visualization of spatial distribution of variation and correlation on FE structure.

- Selecting and visualizing important regions and calculation of their correlations.
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Figure 9. Example of an Anthill (scatter) plot.
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6. Conclusions

Sensitivity study and robustness evaluation have been conducted for a typical simulation model at
product level complexity. The number of input parameters in the sensitivity study included drop
test position and all possible design parameters which were of interest for designers in order to
estimate their relative importance. We can conclude that it is possible to use such sensitivity
studies to identify design drop positions and main design parameters to optimize the structure. As
an example, interesting results have been obtained for display glass. The sensitivity study indicates
high probability that the highest stress in the display glass occurs in drop cases on one front corner
for drop orientation angles of 2 ... 6 °. Critical design load cases for the glass could be identified.
Within the investigated design modifications, battery weight and Ul-shield thickness are the most
effective design variables to reduce glass loading.

Robustness evaluation at a drop angle of 0° shows very small influences of manufacturing
tolerances or material scatter on the maxima of glass loading compared to small deviations of the
drop angle (+-1°). Therefore the main task of improvement (more robust design) is to reduce glass
loading sensitivity to drop position. The safety margin due to deviation of worst case drop
positions can be extracted and compared to safety margins which are used today in the virtual
design process from scatter estimations of robustness evaluation. That is a very efficient method in
order to avoid over-engineering by using too large safety margins and on the other hand to avoid
robustness problems by using too small safety margins.

For a robust design of mobile devices sensitivity and robustness studies can provide an extended
insight into the complex non-linear nature of the reliability against mechanical loading. At the
current state-of-the-art in numerical simulation and with current simulation hard- and software it is
feasible to perform such types of investigations. Due to fast increase in hardware and software
performance, FEM analyses can go to the next level today: statistically relevant numerical
analyses with a sufficient number of design simulations. The simulation time for a corner drop test
of a mobile phone has been reduced significantly in the last 5 years. Due to this development,
developers of complex, mechanically sensitive devices can benefit from software like optiSLang
or Statistics on Structure to evaluate the reliability of their products.

Further improvement of model parametric, hardware and numerical methods will allow
introducing the assessment of tolerances in material parameters and geometry in numerical
simulations of mechanical performance as a standard. This development is very beneficial to
increase the quality and reliability of electronic consumer products via virtual prototyping.
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