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ADVANCED METHODS OF STOCHASTIC AND OPTIMIZATION
IN INDUSTRIAL APPLICATIONS

Dirk Roos∗

DYNARDO – Dynamic Software and Engineering GmbH, Weimar, Germany

ABSTRACT: In real case applications within the virtual prototyping process, it is not always possible to
reduce the complexity of the physical models and to obtain numerical models which can be solved quickly.
Usually, every single numerical simulation takes hours or even days. Although the progresses in numerical
methods and high performance computing, in such cases, it is not possible to explore various model configu-
rations, hence efficient surrogate models are required.
The paper gives an overview about advanced methods of meta-modeling. In addition, some new aspects are
introduced to impove the accuracy and predictability of surrogate models, commonly used in numerical models
for automotive applications. Whereby, the main topic is reducing the neccessary number of design evaluations,
e.g. finite element analysis within global variance-based sensitivity and robustness studies. In addition, the
similar approach can be used to perform optimization and stochastic analysis and to create synthetic meta-
models for experimental data.
Stochastic analysis and optimization of technical systems have gained increasing attention in engineering
practice in recent years. While in reliability analysis, occurrence of rare events, that violate the safety or
performance criteria of a system are computed, robustness assessment deals with the sensitivity towards natural
scatter of the system parameters in a high probability range. In order to obtain meaningful results from any
of these assessments, an accurate model of the underlying random parameters has to be used. There exist
physical or geometrical quantities which vary randomly along the geometry of a structure, such as distributed
loads, Young’s modulus, material thickness etc. The spatial correlation of such parameters can be taken into
account by modelling them as random field.
Design for Six Sigma is a concept to optimize the design such that the parts conform with Six Sigma quality,
i.e. quality and reliability are explicit optimization goals even with variations e.g. in manufacturing, design
configurations and environment. This paper presents an adaptive response surface method in the design and
random space to solve reliability-based optimization problems under uncertainties. The probabilistic and
optimization tasks are performed with the optiSLang, SoS and SLang software packages.

KEYWORDS: surrogate models, robustness evaluation, random fields, stochastic finite elements, reliabil-
ity analysis, robust design optimization

1 INTRODUCTION
Within many engineering fields, structural de-
sign must meet challenging demands of cost-
effectiveness. This leads to light-weight, highly
flexible, and consequently vulnerable structures. In
order to assess potential risks associated with such a
design, the structural analysis must take into account
available information on the randomness of loads
and structural properties. It means that the analysis
should include reliability estimates in an appropriate
manner. Methods of multidisciplinary optimization
have obtained an increasing importance in the de-
sign of engineering problems for improving the de-
sign performance and reducing costs. The virtual
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prototyping is an interdisciplinary process. Such
a multidisciplinary approach requires to run differ-
ent solvers in parallel and to handle different types
of constraints and objectives. Arbitrary engineer-
ing software and complex non-linear analyses have
to be connected. Resulting optimization problems
may become very noisy, very sensitive to design
changes or ill-conditioned for mathematical func-
tion analysis (e.g. non-differentiable, non-convex,
non-smooth).

Considering the properties of the computational
analysis realistically it is necessary to take into ac-
count some uncertainty. This uncertainty can be
conveniently described in terms of probability mea-
sures, such as distribution functions. It is a major
goal of stochastic computational analysis to relate
the uncertainties of the input variables to the un-
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certainty of the model response performance. The
stochastic models for these uncertain parameters can
be one of the following:

• Time-independent random problems (Reliabil-
ity analysis)

– Random variables (constant in time and
space)

– Random fields (correlated fluctuations in
space)

• Time-dependent random problems (First pas-
sage reliability analysis)

– Random processes (correlated fluctua-
tions in time)

Within a computer implementation it becomes nec-
essary to discretize random fields/processes in time
and space. This immediately leads to a considerable
number of random variables.
The aims of stochastic analysis include safety mea-
sures such as time-invariant failure probabilities
or safety indices, response variability in terms of
standard deviations or time-variant first passage
probabilities. The available solution methods for
these tasks are exact methods (numerical integra-
tion, Monte Carlo simulation – MCS), approxi-
mate (first and second order reliability method –
FORM/SORM, response surface method - RSM) or
other techniques (e.g. based on Markov vector the-
ory in stochastic dynamics).
The stochastic analysis software SLang (– the Struc-
tural Language) includes several methods solving
all off these stochastic models. Currently, optiS-
Lang (– the optimizing Structural Language) sup-
ports methods to solve nonlinear optimization and
to analyse random variables only. In addition, the
SoS (– Statistics on Structures) add-on tool to op-
tiSLang provides methods to solve random fields.

2 META-MODELING
2.1 INTRODUCTION

Meta-modeling is one of the most popular strategy
for design exploration within nonlinear optimization
[1–3] and stochastic analysis [4–7]. Moreover, the
engineer has to calculate the general trend of physi-
cal phenomena or would like to re-use design experi-
ence on different projects. Due to the inherent com-
plexity of many engineering problems it is quite al-
luring to approximate the problem and to solve other
design configurations in a smooth sub-domain by
applying a surrogate model ([8, 9]). Starting from a
reduced number of simulations, a surrogate model of
the original physical problem can be used to perform
various possible design configurations without com-
puting any further analyses. So, the engineer may
apply a classical design of experiment or stochastic

sampling methods for more than n = 10...15 input
parameters to calculate the simulations.

2.2 POLYNOMIAL LEAST SQUARE AP-
PROXIMATION

These well-distributed results can be used to cre-
ate the meta-models. To simulate complex real
world systems the response surface methodology
is becoming very popular and is widely applied in
many scientific areas. In general, response surface
methodology is a statistical method for construct-
ing smooth approximations to functions in a multi-
dimensional space. In design studies, e.g. design op-
timization or reliability analysis, a response surface
is generated with appropriate approximation func-
tions on a suitable set of discrete support points dis-
tributed throughout the design space of interest.
A commonly used approximation method of model
responses, objectives, constraints and state functions

y(x) 7→ ŷ(x)

is the regression analysis. Usually, the approxi-
mation function is a first or second order polyno-
mial ([10–12]) as shown in Figure 2. As an exam-
ple in the (n = 2)-dimensional case, k-responses
(k = 0, ..., N ) will be approximated using a least
square quadratic polynomial in the following form:

yk = β0 + β1x1k + β2x2k + β11x
2
1k + β22x

2
2k

+ 2β12x1kx2k + εk

(1)
Herein the term εk represents the approximation er-
rors. The approximate coefficients β̂ can be calcu-
lated using the least square postulate

S =
m∑

k=1

ε2k = εT ε → min

Of course the accuracy of the approximation com-
pared to the real problem has to be checked and ver-
ified. For reasonably smooth problems, the accuracy
of response surface approximations improves as the
number of points increases. However, this effect de-
creases with the degree of oversampling. An attrac-
tive advantage of the response surface methodology
is the smoothing by approximating the subproblem.
Especially for noisy problems like crash analysis,
for which the catch of global trends is more impor-
tant and the local noise may not be meaningful, a
smoothing of the problem may be advantageous.
However, the recommended area of application is
restricted to reasonably smooth problems with a
small number of input variables, because linear and
quadratic functions are possibly weak approxima-
tions near and far from certain support points. And
using polynomials higher than second order may
only result in higher local accuracy with many sub-
optima. Because of that in the last years, different
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Figure 1: Original model response function z(x, y).

Figure 2: Polynomial least square approximation of
a given set of support points. Quadratic approxima-
tion function ẑ(x, y) using quadratic regression.

advanced surrogate models have been developed to
impove the accuracy and predictability of surrogate
models.

2.3 STEPWISE RESPONSE SURFACES

Within the stepwise response surface approach the
response surface is determined by backward step-
wise regression ([13]), so that the square and cross
terms can be absorbed into the model automatically
according to their actual contribution, which is cal-
culated by repeated variance analysis. The quadratic
backward stepwise regression begins with a model
that includes all constant, linear and quadratic terms
of the least square polynomial approximation (1).
By deleting trivial regressors one at a time this ap-
proach develops a stepwise final regression model
which only contains regression coefficients which
have large effects on the responses. This method is

often applied for multiobjective optimization of ve-
hicles. e.g. in [14–16]. Therewith the number n of
linear and quadratic terms of the regression model
can be dramatically reduced.

2.4 SHEPARD INTERPOLATION

A well known method that among all scattered data
for an arbitraty number of variables is the [17]
method. Shepard’s method and its generalization
(e.g. [18]) is a statistical interpolation averaging the
known values of the original function which exactly
interpolates the values of the data. The most relevant
drawback of this method is that the interpolated val-
ues are always constrainted between the maximum
and minimum values of the data set.

2.5 KRIGING MODELS

Kriging was originally developed to model spatial
variations in measured geological models ([19]).
These models are inherently random, and in most
cases the variation about a constant mean value is
gaussian. Furthermore, the use of Kriging models
is also becoming popularity for approximating op-
timization and stochastic problems ([20]). Kriging
is an accurate surrogate model for this type of ap-
plication due to its flexibility to approximate many
different and complex response functions. In addi-
tion, it is also suitable for deterministic models since
it interpolates the support data points and provide a
confidence interval about a prediction result of the
approximation model. The flexibility of this method
is a result of using a set of parameters to define the
model but the process of selecting the best set of pa-
rameters for a Kriging model has a few drawbacks.
These parameters must be found via a constrained it-
erative search, a computationally expensive process
with respect of the assumption gaussian random pro-
cess ([21]).

2.6 ADVANCED MOVING LEAST SQUARE
APPROXIMATION

Moving least square (MLS) functions can approx-
imate locally clustered support point samples with
higher local approximation quality. In addition MLS
improve the response surface model using additional
support points. MLS is formulated as

ŷ(x) =
nb∑
i=1

hi(x)ai(x) = hT (x) a(x) (2)

with a predefined number of basis terms nb, a vector
of basis functions h and the associated vector of the
coefficients a. [22] formulates a local MLS approx-
imation as

ŷ(x,xj) =
nb∑
i=1

hi(xj)ai(x) = hT (xj) a(x)
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Figure 3: MLS approximation with weighting func-
tion (5) and D = 1. For some support points
(−2.5 ≤ x ≤ 0) the approximation error is very small
but for coordinates where the support points have
larger distances the shape function is not continu-
ous.

with j = 1, ..., ns support points. The approxi-
mate coefficient vector a can be calculated using the
weighted least square postulate

S(x) =
ns∑

j=1

w(x− xj) (ŷ(x,xj)− y(xj))
2

=
ns∑

j=1

w(x− xj)

(
nb∑
i=1

hi(xj)ai(x)− y(xj)

)2

= (Ha− g)T W(x)(Ha− g) → min
(3)

with the weighting function w(x− xj) and

g = [y(x1) y(x2) ... y(xns
)]T

H = [h(x1) h(x2) ... h(xns
)]T

h(xj) = [h1(xj) h2(xj) ... hnb
(xj)]T

W(x) = diag[w(x− x1) w(x− x2) ... w(x− xns
)]

The least square error S(x) may be a minimum in
case that the partial gradients are zero.

∂S(x)
∂a

= 0

So using the Equation (3) a linear equation system
gives an estimation of the coefficient vector a

a(x) = M−1(x) B(x) g (4)

with

M(x) = HT W(x) H

B(x) = HT W(x)

Cause the matrix of the basis function M(x) should
be non-singular always a sufficient number of ns
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Figure 4: MLS approximation with weighting func-
tion (5) and D = 2. Now the interval where the shape
function is continuous is larger but the error for points
with−2.5 ≤ x ≤ 0 increases and for marginally coor-
dinates where are no support points the shape func-
tion is still not continuous.

immediate neighbor support points have to be avail-
able. The number must be at least as large as number
of the basis terms. The Equation (4) inserted in (2)
gives the approximation function

ŷ(x) = hT (x) M−1(x) B(x) g

An accurate as possible approximation quality re-
quires a weighting function which is larger than
zero w(x − xj) > 0 and monotonically decreasing
w(‖x−xj‖) inside of a small sub space Ωs ⊂ Ω. So
the influence of supports far from the actual coordi-
nates is unimportant. An uniform weighting is given
by a symmetry condition w(x−xj) = w(xj−x) =
w(‖x − xj‖). Usually, an exponential function is
used in this way:

w(‖x−xj‖) =

 e
−

0@‖x− xj‖
Dα

1A2

‖x− xj‖ ≤ D
0 ‖x− xj‖ > D

(5)
with a constant

α =
1√

− log 0.001

and a influence radiusD to choose. It is obvious that
the smaller D the better the response values of the
support points fit the given values. But as mentioned
above at least nb support points have to be available
in every point to be approximated. Therefore it is
possible that a D has to be chosen which leads to
a large shape function error at the support points -
see Figures 3, 4 and 5. To avoid these problems a
new regularized weighting function was introduced
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Figure 5: MLS approximation with weighting func-
tion (5) and D = 3. The shape function is com-
pletely continuous in the contemplated interval but
the shape function error at the support points is very
large.

by [23]:

wR(‖x−xj‖) =


ŵR(‖x− xj‖)

ns∑
i=1

ŵR(‖x− xi‖)
‖x− xj‖ ≤ D

0 ‖x− xj‖ > D
(6)

with 0 < j ≤ ns and

ŵR(d) =

((
d

D

)2

+ ε

)−2

− (1 + ε)−2

(ε)−2 − (1 + ε)−2
; ε� 1

(7)

It is recommended by the authors to use the value

ε = 10−5

As a matter of fact a large D is needed to approx-
imate for coordinates where no support points are
around and a small D is needed for coordinates
where are a lot of support points in order to reach
a minimal approximation error. To comply with this
conditions it is necessary to use a function d(x) for
the influence radius instead of a constant D. One
possibility to get such a function is to properly scale
and flip horizontal a function fosp, which represents
the occurrence of the support points
Another problem within optimization and stochas-
tic analysis could be the fact that the approximation
for marginal coordinates follows the global trend of
the given support points. This may lead to marginal
approximation values which differ from the approx-
imation values of the support points for orders of
magnitudes. Then it could be useful to add some
support points (border points) to force the approxi-
mation for marginal coordinates to averaged values.
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Figure 6: MLS approximation with regularized
weighting function (7) and D = 10.

The values for the additional support points are cal-
culated with the Shepard interpolation. Whereby the
weighted interpolation function of the response sur-
face is

ŷ(x) =

n∑
i=1

y(xi)
(

1
‖x− xi‖+ ε

)m

n∑
i=1

(
1

‖x− xi‖+ ε

)m m = 1, ..., 5

The smoothing of the interpolation is numerically
controlled by the smoothing exponent m.

2.7 SUPPORT VECTOR MACHINES

2.7.1 Classification
A very efficient tool for classification purposes are
Support Vector Machines (SVM), which is a method
from the statistical learning theory. This method was
firstly proposed by [24] and became popular in the
last decade. Fundamental publications from this pe-
riod are [25], [26] and [27]. The algorithmic prin-
ciple is to create a hyperplane, which separates the
data into two classes by using the maximum margin
principle.
The linear separator is a hyperplane which can be
written as

f(x) = 〈w,x〉+ α0 (8)

where w is the parameter vector that defines the nor-
mal to the hyperplane and α0 is the threshold. In
Figure 7 a linear separation is shown for a set of
points. The two classes are associated with −1 and
+1. The SVM principle is to maximize the distance
between the hyperplane and the two classes. This
can be seen in Figure 7. This principle can be writ-
ten as an optimization problem

maxw,b mini{‖x− xi‖ : 〈w,x〉+ α0 = 0} (9)

where

mini{‖x− xi‖ : 〈w,x〉+ α0 = 0} (10)
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yi = +1

yi = −1

〈w,x〉 + b = +1

〈w,x〉 + b = −1

Figure 7: SVM: linear separation by a hyperplane

is the minimum distance from the training points to
the hyperplane. By assuming that the minimal dis-
tance is equal to one

mini=1..n|〈w,xi〉+ α0| = 1 (11)

we obtain for the margin width

∆ =
2|〈w,xi〉+ α0|

‖w‖
=

2
‖w‖

(12)

By introducing Lagrange multipliers αi ≥ 0 we ob-
tain the following unconstraint form of the problem

w =
n∑

i=1

αiyixi with
n∑

i=1

αiyi = 0 (13)

whereby only the training points for which the La-
grange multipliers are strictly positive αi > 0, the
so-called support vectors, are needed for the func-
tion evaluation

w =
s∑

j=1

αjyjxj (14)

with s < n.
For nonlinear separable classes the training data are
mapped nonlinearly into a higher-dimensional fea-
ture space and a linear separation is constructed
there. This is illustrated in Figure 8. The transfor-
mation ψ(x) which is realized as an inner product

f(x) =
s∑

i=1

αiyi〈ψ(xi), ψ(x)〉+ α0 (15)

can be substituted by a kernel function

K(x,y) = 〈ψ(x), ψ(y)〉 (16)

which leads finally to the expression

f(x) =
s∑

i=1

αiyiK(xi,x) + α0 (17)

Figure 8: SVM: nonlinear projection into feature
space

where explicit knowledge of the nonlinear mapping
is not needed. Often used kernel types are the Gaus-
sian kernel

K(x,y) = exp
(
−‖x− y‖

2D2

)
(18)

and the polynomial kernel

K(x,y) = (〈x,y〉+ θ)p (19)

During the training of the support vector machines
the Lagrange multiplier of the training points have
to be determined by minimizing the primal objective
function obtained from Eq.(9) which reads

Lp(ααα) =
1
2

s∑
i=1

s∑
j=1

yiyjαiαjK(xi,xj)−
∑
i=1

αi

(20)
Many algorithms can be found in literature, see [27].
We use one of the fastest methods, the sequential
minimal optimization algorithm proposed by [28]
for this training. In this algorithm the Lagrange mul-
tipliers will be updated pair-wisely be solving the
linear constraint conditions.

2.7.2 Regression
Regression based on Support Vector Machines was
introduced by [29]. In [30] and [31] a detailed intro-
duction is published. In the SVR approach an error
tolerance function

Lε(y) =
{

0 |f(x)− y| < ε
|f(x)− y| − ε |f(x)− y| ≥ ε

(21)
which is called ε-insensitive loss function is defined.
The optimization task is defined as

minimize
1
n

n∑
i=1

|f(xi,w)− yi|ε + ‖w‖2. (22)

The output of the Support Vector Regression reads

f(x) =
n∑

i=1

(α∗i − αi)K(xi,x) + α0 (23)
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where α∗i and αi are the Lagrange multipliers. The
primal form of the objective function reads

Lp(ααα∗,ααα) =ε
n∑

i=1

(α∗i + αi)−
n∑

i=1

yi(α∗i − αi)

+
1
2

n∑
i=1

n∑
j=1

(α∗i − αi)(α∗j − αj)K(xi,xj)

(24)
subjected to the constraints

n∑
i=1

(α∗i − αi) = 0, 0 ≤ α∗i , αi. (25)

Again it is recommended to use the sequential mini-
mal optimization algorithm for the determination of
the Lagrange multipliers.

2.8 ARTIFICAL NEURAL NETWORKS

2.8.1 Introduction
Artificial neural networks are inspired by biological
counterparts. The brain consist of a large number
(1011) of highly connected elements (approximately
104 connections per element) - neurons. In our sim-
plified approach, a neuron can be considered as con-
sisting of three parts - the dendrites which serve as
sensors for electrical signals and carry it into the cell
body, the cell body sums up all the inputs and pro-
cesses the information and finally the axon which
transmits the output via the synapsis to other neu-
rons. Within this complex system, a large number of
complex information can be stored. Learning dur-
ing lifetime consists of a modification of the con-
nections and a varying weight of each connection
before being processed in the cell body. Artificial
neural networks are used in many areas of engineer-
ing. The main applications can be divided into pat-
tern recognition and regression.

2.8.2 Multilayer Perceptron
The multilayer perceptron is one of the widely used
artificial neural networks, especially suitable for re-
gression analysis. It consist of an input layer a cer-
tain number of hidden layers and an output layer.
Each neuron in the input layer represents a single
input parameter. The neurons of the input layer are
connected to neurons of the first hidden layer. The
number of hidden layers and the number of neurons
is variable and should be chosen with respect to the
complexity of the system response and the number
of available training patterns. Only forward connec-
tions are allowed in a multilayer perceptron. The
neurons in the final output layer represent the out-
put parameter of the regression model. A schematic
drawing of the layout is given in Fig. 50. The output
al

i of neuron i in layer l is calculated as

al
i = h

 N l
i∑

j=1

wl−1
ji vl−1

j + bli

 , (26)

where h is the activation function, N l
i is the num-

ber of connections to the previous layer, wl−1
ji cor-

responds to the weights of each connection and bl

is the bias, which represents the constant part in the
activation function. In Fig.51 commonly used acti-
vation functions are illustrated.

2.8.3 Training

The training of the neural network is an optimiza-
tion procedure, in which the weights and biases of
the neural network are determined. For this pur-
pose, a certain a number of training samplesM with
corresponding pairs of inputs pi and outputs oi is
required. The mean square error F , which is the
average value of the difference between the approx-
imated response and the outputs, is used as objective
in the optimization procedure.

F (w, b) =
1
M

M∑
i=1

ei (27)

ei = |a(pi)− oi|2 (28)

In general, different training algorithms can be ap-
plied to solve this optimization procedure. The
most important are the standard back-propagation
algorithm [32], RPROP [33], the conjugate gradient
method [34] and the scaled conjugate gradient algo-
rithm [35]. In this paper, the Levenberg Marquardt
algorithm [36] has been used, since for small sys-
tems with up to 1000 free parameters it was found to
be faster compared to other methods. For all these
methods, the gradient g of the objective function F
with respect to the free parameters x (weights w and
biases b) is to be calculated. This can be performed
with a variation of the back-propagation algorithm
[37]:

G =
∂F

∂xj
=

2
M

M∑
q=1

N∑
i=1

eq
i (x)

∂eq
i (x)
∂xj

=
2
M

M∑
q=1

[Jq(x)]T eq(x)

(29)

Jq(x) =


∂eq

1(x)
∂x1

...
∂eq

1(x)
∂xn

...
...

∂eq
N (x)
∂x1

...
∂eq

N (x)
∂xn

 , (30)

where J describes the sensitivity of the outputs with
respect to the free parameters and N is the dimen-
sion of the output vector. The Hessian can be ex-
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pressed in a similar way as

H =
∂2F

∂xj∂xk

= 2
M∑

q=1

N∑
i=1

[
∂eq

i (x)
∂xk

∂eq
i (x)
∂xj

+ eq
i (x)

∂2eq
i (x)

∂xj∂xk

]

=
2
M

M∑
q=1

{
[Jq(x)]T Jq(x) + 2Sq(x)

}

H̃ =
2
M

M∑
q=1

{
[Jq(x)]T Jq(x)

}
.

If we assume Sq to be small, the exact Hessian H
can be replaced by H̃ . As a result, the update of the
parameters in the Newton-iteration can be written as

∆x(k) = −H̃
−1

G. (31)

This approach requires the approximated Hessian H̃
to be invertible. However, this cannot be assured,
especially if a high number of neurons in the hid-
den layer is used and the size of the training set is
small. In order to overcome this problem, an addi-
tional scalar parameter µ is added to all the diagonal
elements of H̃ . In the limit case of µ = 0 the al-
gorithm converges to the Newton method (with the
approximated Hessian), whereas for a large param-
eter µ the update can be approximated by a steepest
descent algorithm with learning rate 1

2µ :

∆x(k) ≈ − 1
2µ

G(k) , for largeµ. (32)

The parameter µ is initially set to a small value (e.g.
0.01), the update ∆x(k) and the mean square error
F (x(k)+∆x(k)) are calculated. If a reduction of the
mean square error is obtained, the next iteration step
k+1 is performed with µ(k+1) = µ(k)/2, otherwise
the iteration step is repeated with a µ(k) increased
by a factor of 2.
The initial weights have been calculated from a uni-
form distribution in the interval [−s, s] according to
[38], where s is given by

s =
√

3
Li

(33)

and Li is the number of input connections of the
neuron. The initial biases are set to zero. Due to
the random initialization the training process was
repeated 10 times to decrease the influence of the
starting values of the weights.
In order to reduce the influence of over-fitting, an
early stopping criterion [39] is applied. The data
set is divided into a training and validation set. The
update of the weights and biases is stopped, if the
required accuracy of the mean square error for the
training samples is reached, the mean square error

for the validation set starts to increase or the norm
of the gradient of the objective function is smaller
than a prescribed value.
In general, two strategies for learning can be applied
- sequential learning and batch mode learning. In the
first approach, the training samples are presented to
the learning algorithm separately in a stochastic or-
der (e.g. randomly) and the free parameters are up-
dated for each of these training samples to reduce
the difference between the network output and the
training sample. In the second approach, the aver-
age error for the whole training set is calculated and
the update of the free parameters is performed for
the full set at once. In this investigation, the batch
mode was applied, since the convergence speed of
the method increased dramatically compared to the
sequential approach.
In the same way, the number of neurons in the sin-
gle hidden layer is calculated. Starting with only
three neurons, the number of neurons is iteratively
increased until no significant decrease of the objec-
tive function is obtained in the validation data set.

3 STOCHASTIC SAMPLING
3.1 INTRODUCTION

For a global variance-based sensitivity analysis it is
recommended to scan the design space with latin
hypercube sampling and to estimate the sensitiv-
ity with the multivariate statistic based on surrogate
models. Results of a global sensitivity study are the
global sensitivities of the optimization or random
variables due to important responses. So, it is possi-
ble to identify the sub domains for optimization and
reliability analysis.

3.2 LATIN HYPERCUBE SAMPLING

Latin hypercube sampling (LHS) is an advanced
Monte Carlo simulation and a further development
of the stratified sampling methodology. In order to
reduce the necessary number of samples, each class
of any random variable is considered in the same
manner ([40]). First, the marginal distribution or cu-
mulative distribution function Xi is subdivided into
N classes Dj with the same probability

P [xi ∈ Dj ] =
1
N
, i = 1, ..., n, j = 1, ..., N

So Nn hypercubes are created with the probability
N−n. Using random permutations of the indices i
and j, we obtainN samples. For each class, one rep-
resentative value can be selected random based, or is
defined using the mean value for this class ([41]).
Latin hypercube sampling is qualified for simulation
of samples for the robustness evaluation. In com-
parison with the plain Monte Carlo simulation, it re-
quires fewer sampling points to represent the design
space. Furthermore, LHS can be used as a selec-
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tion procedure to find support points in the experi-
mental design. Whenever, for systematic sampling
methods, the number of required support points is
unacceptable, LHS is especially suitable to reduce
the number of support points.
Spurious linear correlations between the random
variables are reduced by using a Cholesky decom-
position of the target correlation matrix ([42]). This
algorithm requires that the number of samples is
higher than the number of stochastic variables N >
n. If this is not the case this algorithm is not applied,
which implies that spurious correlations occur with
the same order of magnitude as by using plain Monte
Carlo Simulation. This effect can be seen in Table
2. In contrast to the reduced spurious linear correla-
tions the magnitudes of higher order correlation er-
rors, e.g. quadratic dependencies, are not reduced
by using this type of Latin Hypercube Sampling.

3.3 LATIN HYPERCUBE SAMPLING WITH
MINIMIZED LINEAR CORRELATION
ERRORS

Alternative to the standard Latin Hypercube sam-
pling with Cholesky decomposition the spurious lin-
ear correlations can be minimized by an internal
optimization procedure using a column-pairwise-
switch algorithm. This approach works indepen-
dently of the sample size, thus it is also applied for
N ≤ n. In Table 2 the differences in the correlation
errors between both LHS types are given. Due to the
internal optimization procedure this advanced Latin
Hypercube sampling requires a significant higher
numerical effort than the standard method. Based on
Table 3 we recommend to use this sampling method
only up to 500 samples. For a higher number of
samples the computation is quite expensive and the
benefit is negligible compared to the standard LHS
scheme.
Additional to the generation of an initial design this
advanced LHS method can be used to generate addi-
tional samples to an existing sample set. Any sam-
pling type of the existing set can be considered, the
final set is obtained by minimized the correlation er-
rors of the merged set of initial and additional sam-
ples. If the existing set is also generated by Latin
Hypercube sampling, the optimal number of addi-
tional samples is the double amount of the initial
number.

4 MULTIVARIATE STATISTIC

4.1 ANALYSIS OF CORRELATION

Various statistical analysis procedures are available
for the subsequent evaluation of correlation of input
parameters and the responses. For example, the co-
efficients of correlation are calculated from all pair-
wise combinations of both input variables and re-

linear regression with correlation coefficient = 0.964
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Figure 9: Given set of samples of input parameter
xi = x and response xj = y, linear regression func-
tion with correlation coefficient of ρij = 0.964.

       quadratic regression with correlation coefficient = 0.620
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y = a*x† + b*x + c
Quadratic regression

Figure 10: Given set of samples of input parameter
xi = x and response xj = y, quadratic regression
function with correlation coefficient of ρij = 0.62.
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sponse according to:

ρij =
1

N − 1

N∑
k=1

(
x

(k)
i − µxi

)(
x

(k)
j − µxj

)
σxi

σxj

(34)
The quantity ρij , called the linear correlation coef-
ficient, measures the strength and the direction of a
linear relationship between two variables, as shown
in Figure 9. The linear correlation coefficient is
sometimes referred to as the Pearson product mo-
ment correlation coefficient. The quadratic coeffi-
cients of correlation

ρij =
1

N − 1

N∑
k=1

(
ŷ(k)(xi)− µŷ(xi)

) (
x

(k)
j − µxj

)
σŷ(xi)σxj

is defined as the linear coefficient of correlation (see
Equation (34)) between the least-squares fit of a
quadratic regression ŷ(xi) of the variable xj and xj

themselves on the samples x(k)
i , x

(k)
j , as shown in

Figure 10. A correlation greater than 0.7 is generally
described as strong, whereas a correlation less than
0.3 is generally described as weak. These values can
vary based upon the type of data being examined.
All pairwise combinations (i, j), values can be as-
sembled into a correlation matrix CXX , as shown in
Figure 52.

4.2 ANALYSIS OF PREDICTION

The coefficient of determination

R2
j =

N∑
k=1

(
ŷ(k)(xi)− µXj

)2

N∑
k=1

(
x

(k)
j − µXj

)2

with i = 1, ..., n is a value which indicates the shak-
ing (variance or fluctuation) of responses j of the
approximation model, depending on the regression
model terms. It is a measure thats allow to predict
the dependence of a response value from a set of
input parameter i = 1, ..., n in a special regression
model context. This R2 value varies between 0 and
1. The coefficient of determination represents the
percent of the data that is the closest to the regres-
sion model best fit. For example, R2 = 0.868 based
on a linear regression, which means that 86.8% of
the total variation in the response value y can be
explained by the linear relationship between the re-
gression model containing input parameter. How-
ever, a high value of R2 not allways implies a good
regression model, because adding of additional ap-
proximation model terms increase the coefficient.

Figure 11: Confidence Interval for coefficient of cor-
relation ρ.

Figure 12: 95% Confidence intervals to estimate a
coefficient of correlation of ρ = 0.5 using LHS.

Figure 13: Costs of the robustness evaluation de-
pending on the sampling method, the number of in-
put and oputput parameters ni, no and the regres-
sion model to estimate the prediction values. A com-
monly used maximal sample number is N = 150.
So, in case of a full polynomial regression model the
number of input parameters is restricted to n < 16.
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Adjusted coefficient of determination This inad-
equacy leads to the adjusted R2 coefficient

R2
adj = 1− N − 1

N − p

(
1−R2

)
who not increase with the number of model terms
for a small sample size N . Whereat N is the num-
ber of sample points and p the number of regression
coefficients. In fact the coefficient decreases with
unnecessary model terms. With the comparison of
R2 and R2

adj it is possible to predict the regression
model. A high difference between the coefficients
indicates that unnecessary terms are included in the
model.

Coefficients of importance An important predic-
tion value to explain the influence of a single input
parameter l on a chosen output parameter j, depend-
ing on the regression model is the coefficients of im-
portance

COIjl = R2
j −

N∑
k=1

(
ŷ(k)(xi)− µXj

)2

N∑
k=1

(
x

(k)
j − µXj

)2

which an regression model
ŷ (xi|i ∈ {1, ..., n} ∧ i /∈ {l}). In addition the
adjusted coefficients of importance is given by

COIadj
jl = 1− N − 1

N − p
(1− COIjl)

4.3 COSTS OF THE ROBUSTNESS EVALU-
ATION

4.3.1 Minimal sample size
In order to obtain stable statistics for large linear
correlation coefficients only, there is a relation be-
tween the number of design variables n = ni, the
number of responses no and the necessary num-
ber of samples. The simulation procedure will pro-
duce N samples for all parameter xi denoted by
xk

i ; i = 1 . . . n; k = 1 . . . N . In general it is
recommended that the number of samples N be at
least equal, but better higher than the number n of
design variables.
The recommended minimum number of samples de-
pends on the number of input and oputput parame-
ters and is given byN = (ni +no)2 for plain Monte
Carlo sampling and N = 2(ni +no) for latin hyper-
cube sampling, as shown in Figure 13. This rough
estimation may be sufficiently for a relative small
number of input parameters up to n < 40. A more
precise estimation is given as a results of a conver-
gence study of the confidence intervals.

4.3.2 Confidence intervals
Of course, the correlation coefficients are random
values themselves. Whereby the variance depends
on the number of the calculated samples N . Ac-
cording to a specified confidence interval Ip of e.g.
95% the possible lower and upper bounds of the es-
timated coefficients of correlation ρij can be evalu-
ated, as shown in Figure 11.
The confidence intervals for the estimated coeffi-
cients of correlation ρij in Figure 12 are computed
based on the Fisher’s z-transformation. The interval
for a significance level of α (i.e. a confidence level
of 1− α) is given by[
tanh

(
zij −

zc√
N − 3

)
, tanh

(
zij +

zc√
N − 3

)]
In this Equation, N is the number of samples used
for the estimation of ρij . The critical value zc is
computed by using the Bonferroni-corrected value
for the significance level α′ = α/k with k being the
number of confidence tests. The transformed vari-
able z is computed from

zij =
1
2

log
1 + ρij

1− ρij
(35)

and the critical value zc is given by

zc = Φ−1(1− α′/2) (36)

where Φ−1(.) is the inverse cumulative Gaussian
distribution function.
In order to study the effect of latin hypercube sam-
pling on the reduction of statistical uncertainty, a
comparison of the estimation errors (standard devi-
ations) of the correlation coefficients is carried out.
The most important domain in the range of 2 < n <
200, coefficient of correlation ρ = 0.5 is detailed
shown in Figure 12. For example, for n = 160 in-
put parameters and a tolerated maximum error of 14
percent according to a 95%-confidence interval the
necessary number of samples isN = 200 using latin
hypercube sampling.

4.3.3 Cost of the regression model
The regression models for the coefficient of impor-
tance require a minimum number of samples

N = 1 + n+
n(n+ 1)

2
(37)

depending on the constant, linear and quadratic
terms of the regression model. So, in case of a
full polynomial regression model and an acceptable
maximal sample number of N = 150 the number of
input parameters is restricted to n < 16.
To eliminate this limitation, other surrogate mod-
els e.g. reduced polynomial regression model, mov-
ing least square approximation, artificial neural net-
works and support vector regression are introduced
in the previous sections of this paper.
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Figure 14: Performance of methods for stochastic
analysis. a.) Monte Carlo simulation (MCS), b.) Re-
sponse Surface Method (RSM), c.) First Order Reli-
ability Method (FORM).

4.4 SIGNIFICANCE FILTER AND RE-
DUCED POLYNOMIAL REGRESSION
MODEL

The meta-modeling approaches reported in the liter-
ature are usually based on the assumption that a sim-
ulation model generates a single, i.e. scalar value re-
sponse. But most complex engineering simulations
yield to multiple responses. To reduce the required
number of support points a possible approach is to
create a separate meta-model for each response in-
dividually.
A significance filter to reduce the number n of
relevant input parameters can be based on the
differences between the user-defined and sampled
quadratic and linear input correlation matrix CXX .
Figure 52 shows the linear correlation matrix as a
result of the latin hypercube sampling approach. In
this example the user-defined input correlation ma-
trix is simple the unite matrix. So, the histogram of
the differences can be calculated, as shown in Figure
54, and can be fitted by a probability density func-
tion with the 95% – 99%-fractiles of the coefficients
of correlation. These quantiles are used as a signifi-
cance filters for the relevant input parameters with a
coefficients of correlation larger than these bounds.
Result is a reduced polynomial regression model of
the responses, as shown in Figure 53.

5 RELIABILITY ANALYSIS
5.1 INTRODUCTION

Numerical methods, e.g. for structural analysis have
been developed quite substantially over the last
decades. In particular, finite element methods and
closely related approximations became the state of
the art. The modeling capabilities and the solution
possibilities lead to an increasing refinement allow-
ing for more and more details to be captured in the
analysis. On the other hand, however, the need for
more precise input data became urgent in order to
avoid or reduce possible modeling errors. Such er-
rors could eventually render the entire analysis pro-
cedure useless. Typically, not all uncertainties en-
countered in structural analysis can be reduced by
careful modeling since their source lies in the intrin-

sic randomness of natural phenomena. It is therefore
appropriate to utilize methods based on probability
theory to assess such uncertainties and to quantify
their effect on the outcome of structural analysis.
Different methods exist, but they all have a lim-
ited area of application. Although Monte Carlo
methods are most versatile, intuitively clear, and
well understood, the computational cost (the num-
ber of computational runs required) in many cases
is prohibitive. Thus approximations become impor-
tant, which can be based e.g. on the response sur-
face methods (RSM) or first/second order reliability
methods (FORM/SORM). For the feasibility of re-
sponse surface approaches it is quite essential to re-
duce the number of variables to a tractable amount.
This may require extensive sensitivity analysis in or-
der to identify the relevant random variables. This is
particularly important for random variables arising
from discretization of random fields or processes.
In this context, close coupling between the tools for
stochastic and computational analyses is essential.
Simplifications can be based on the following items

• Global variance-based sensitivity or robustness
analysis of the structural response with respect
to the random variables. Again, this aims at re-
ducing the number of random variables needed.

• Concentrate random sampling in the region
which contributes most to the total failure prob-
ability. This is generally called “importance
sampling”. It is important to note that most im-
portance sampling strategies work best with a
low number of random variables.

• Approximation of the numerical response by a
class of simple mathematical functions. This
is the so-called “response surface method”.
Again, it is vital that the number of random
variables be kept small.

As a very simplistic rule-of-the-thumb, Fig. 14 gives
the accuracy/speed ratio for some solution methods
as mentioned above. However, there are situations
in which MCS can be comparably fast or FORM can
be comparably accurate.

5.2 FORMULA OF THE FAILURE PROBA-
BILITY

Safety and reliability analysis warrants the exclusion
of damage and design collapse during the life time.
Probability of surviving is the numerical quantity of
safety and reliability and the probability of failure is
the complement.
We can define any undesired or unsafe state of a re-
sponse as an event F out of the set of all random
variables X such a way that the assign state func-
tion g(x) is less or equal to zero. Generally, failure
(i.e. an undesired or unsafe state of the response) is
defined in terms of a limit state function g(.), i.e.
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by the set F = {X : g(X) ≤ 0}. Frequently,
Z = g(X) is called safety margin. As indicated

F = {(F,L,Mpl) : FL ≥Mpl} = {(F,L,Mpl) :
1− FL

Mpl
≤ 0}

Figure 15: Structural system and several unique fail-
ure conditions.

in Fig. 15, the definition of the limit state function is
not unique. The failure probability is defined as the
probability of the occurrence of the unsafe event F :

P (F) = P [{X : g(X) ≤ 0}] (38)

This quantity is unique, i.e. not depending on the
particular choice of the limit state function.
The response behavior near the failure state is most
important in the reliability analysis. The random de-
sign parameters, such as loadings, material parame-
ters and geometry, are the set of basic random vari-
ables X which determine the probabilistic response
of numerical model. The failure condition is defined
by a deterministic limit state function

g(x) = g(x1, x2, . . . , xn) ≤ 0

as shown in Fig. 10. The failure probability of a
design is given by

P (F) = P [X : g(X) ≤ 0] =
∫

n. . .

∫
g(x)≤0

fX(x)dx

(39)
where fX(x) is the joint probability density function
of the basic random variables.

5.3 RESPONSE SURFACE METHODS FOR
RELIABILITY ANALYSIS

5.3.1 Global Polynomial Approximation
Normally, the state function g(X) of a system re-
sponse is described implicitly, e.g. through an algo-
rithmic procedure within finite element analysis.
Alternatively, the original state function can be ap-
proximated by a response surface function g̃(x)
which has polynomial form ([43–48]). Additional,
the limit state function g(x) = 0 themselves can be
interpolated by second order polynomials ([49, 50]).
One of the major advantages of the response sur-
face method lies in its potential to selectively deter-
mine the number of structural analyses of the sup-
port points. This is especially helpful if some over-
all knowledge on the system behavior - particularly

save domain

xj

x̄j

x̄i

xj
M

xi
M

xi

g(x) = 0

Figure 16: Adaptive design of experiment in the ran-
dom space.

near to the failure region - is a priori available. By
such means the computational effort can be substan-
tially reduced.
On the other hand, the global approximation
schemes widely used in the application of the re-
sponse surface method can be quite misleading due
to the lack of information in certain regions of the
random variable space. Standard second order poly-
nomial approximations are not sufficiently flexible.
So, the estimation of the failure probability using
this global approximation leads to large errors, in
particular for small failure probabilities P (F) <
10−2 and a number of random parameters of n > 5.
It is therefore required to avoid such undesirable ap-
proximation errors at reasonable computational ef-
fort.

5.3.2 Adaptive Response Surface Method
A commonly used approximation method with min-
imized the regression error within the support point
values is the moving least square method. The main
advantage of this method is the flexibility for the
approximation of highly nonlinear state and limit
state functions. The proposed method is suitable
for computing the reliability of complex models and
is intended to provide reasonably accurate estimates
of failure probabilities while maintaining computa-
tional efficiency.

Adaptive design of experiment In particular,
these response surfaces can be adaptively refined to
consistently increase the accuracy of the estimated
failure probability. This is especially suitable for the
reliability analysis of complex nonlinear structures.
An arbitrary number of check points even in high
local concentration can be used without approxima-
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tion problems. Using deterministic design of exper-
iment, the necessary number of support points be-
come very high with an increasing number of ran-
dom variables.
To decrease the number of support points in an op-
timized way, the so called D-optimality criterion is
used. A discussion of this criterion is presented by
[51]. The effectiveness of a design in satisfying
the minimum variance (D-Optimal) criterion is ex-
pressed by the D-Efficiency of the design. In [12],
more exact specifications of the D-Optimal criteria
and further criteria called alphabetic optimality cri-
teria are described. However, the first design of ex-
periment in the first iteration should explore the ran-
dom space including safe and unsafe domain as ac-
curate as possible. A possible approach is given in
[52] with

xi = x̄i ± fσxi

whereby

f = Φ−1(P (F)) = 3, . . . , 5

is a factor depending on the assumed failure proba-
bility. [45] give an efficient possibility to adaption a
design of experiment in the next iterations with

xM = x̄ + (xD − x̄)
g(x̄)

g(x̄)− g(xD)

with
xD = E[X|g(x) ≤ 0]

as shown in Figure 5.3.1. This is achieved by a com-
bination of random search strategies (based on the
adaptive sampling approach) as well as deterministic
search refinement. In such a way for the most practi-
cal examples 3 till 6 iteration steps are necessary for
a sufficient convergence. So this adaptive design of
experiment using a D-optimal linear or quadratic de-
sign in combination with the improved moving least
square approximation is suitable up to n ≤ 20 ran-
dom parameters.

6 RANDOM FIELDS
6.1 INTRODUCTION

Any mechanical structure possesses some natural
randomness in its properties which fluctuates over
space: deviations from the design geometry, sur-
face roughness, scatter of material properties and
distributed loads are few examples. There exist at-
tempts to model uncertainties by few random vari-
ables which are generated by CAD programs. This
approach is meaningful for few special problems
only. For a realistic interpretation of such random
fluctuations within an optimization, robustness or re-
liability analysis, they have to be modelled as ran-
dom fields. To distinguish the random field approach
from the previous one, it is called it non–parametric
here.

In a computer implementation, random processes
or fields are discretized into a finite set of random
variables. The number of variables, however, can
be considerably high. Most of the accurate meth-
ods for computing structural reliability (such as ad-
vanced Monte Carlo Methods) as well as depend-
able approximate methods (e.g., the Response Sur-
face Method) are sensitive towards the number of
variables involved. The present paper proposes a
method to model a random field with a reduced set
of variables. Robustness evaluation is employed
for this purpose, which relates the stochastic input
and output quantities and thus helps to identify the
most relevant variables. Unlike previous approaches
(sketched in sec. 6.3), it does not rely on purely
stochastic considerations, but takes into account the
structural behaviour as well.

6.2 PROPERTIES

A random field is, in brief, a random function H(r)
defined on a spatial structure. The vector r ∈ RStr.

points to a location on the structure. Random fields
are used, e.g., to study random fluctuations in ge-
ometrical or material properties of a mechanical
or structural system. In other words, the consid-
ered property is a random variable at each point on
the structure. Moreover, the random properties at
two different locations can be mutually correlated
among each others.
Any random variable is characterized by a proba-
bility distribution function, which can be parame-
terized by distribution type and stochastic moments.
For random fields, the moments become functions
over space as well. From now on, a Gaussian (or
Normal) distribution type is assumed. In this case,
the characterization by first and second moments
provides the full information. In particular

µH(r) = E[H(r)] =

+∞∫
−∞

hfH(r, h) dh (40)

denotes the mean function, and

RHH(r1, r2) = E[H(r1) ·H(r2)]

=

+∞∫
−∞

+∞∫
−∞

h1h2fH(r1, r2, h1, h2) dh1 dh2

(41)
the correlation function, with E[.] being the ex-
pected value operation. RHH is a function of
the distance between two points and indicates the
amount of linear dependency between the random
properties at these locations.
The so-called correlation length LHH , which is ac-
tually the centre of gravity of the correlation func-
tion, is a typical characteristic of RHH . It has to
be estimated from manufacturing processes, natural
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scatter of material properties, etc. An infinite corre-
lation length yields a structure with random proper-
ties, yet without fluctuations within the structure. A
zero correlation length yields uncorrelated (in case
of the Gaussian distribution independent) variables.
Three special cases are important for the further
studies. Homogeneity: A random field is said to be
homogeneous in the wide sense, if the first and sec-
ond moments are the same at any possible location,
i.e.

µH(r) = µH(r + ξξξ) ∀ ξξξ (42)
RHH(r1, r2) = RHH(r1 + ξξξ, r2 + ξξξ) ∀ ξξξ (43)

Isotropy (in the wide sense) claims that the correla-
tion function depends on the distance between the
two observed locations r1, r2 only, not on the direc-
tion:

RHH(r, r + ξξξ) = RHH(‖ξξξ‖) (44)

In case of orthotropy the correlation function is a
product of two or more independent functions de-
fined on orthogonal axes:

RHH(x,y) = R(x) ·R(y) (45)

6.3 MODELLING

For computational analyses, a random field has to
be discretized in order to yield a finite set of ran-
dom variables X, which are assigned to discrete lo-
cations on the observed structure. Since the Finite
Element Method is the standard for structural anal-
yses, it is convenient to discretize the random field
in the same way as the finite element model. One
speaks of Stochastic Finite Elements in this case.
The discretization can be oriented at the element mid
points, integration points, or nodes. The properties
of the random variables are derived from the random
field properties explained previously. The spatial
discretization should be able to model the variability
of the random field. For this purpose, it has been rec-
ommended by Der Kiureghian and Ke [53], Hisada
and Nakagiri [54] that the distance between two dis-
cretization points should be not more than 1/4 of
LHH .
The set of random variables is then characterized by
a mean vector and a correlation matrix. It is con-
venient for the developments that follow to use the
covariance matrix instead, which is defined as

CXX : cij = RHH(ri, rj)− µH(ri) · µH(rj)
(46)

The joint density of all random variables can be
modelled with help of the Nataf model [55, 56],
given the type and properties of the marginal dis-
tributions for each variable.
From now on, random fields with zero mean vector
are considered. Then the covariance matrix suffices
for the characterization of the random variables set.

Random number generators can produce indepen-
dent random variables only. For the assumed case
of Gaussian distributed variables, independence is
equivalent to zero correlation. It can be shown that
the random variables will be uncorrelated after the
following transformation. The covariance matrix is
decomposed with help of an eigenvalue analysis:

ΨΨΨT CXXΨΨΨ = diag{λi} (47)

Therein, ΨΨΨ is the matrix of eigenvectors of CXX

stored columnwise, and the eigenvalues are identi-
cal to the variances of the uncorrelated random vari-
ables Yi: λi = σ2

Yi
. The transformation rule reads

Y = ΨΨΨT X (48)

and the backward transformation

X = ΨΨΨ Y (49)

because the eigenvectors ΨΨΨ form an orthonormal ba-
sis. Hence it is possible to model the random field
by a Karhunen-Loève expansion of the random field
[57] which consists of a sum of deterministic shape
funtions ΨΨΨ multiplied by the respective uncorrelated
random amplitudes Y.
The eigenvalues are usually stored sorted by mag-
nitude in descending order, which is a measure for
their contribution to representing CXX . This opens
a way of reducing the usually huge number of vari-
ables. Only the random variables with the highest
variances are employed for a later Monte Carlo sim-
ulation. The quality of approximation of the random
field is expressed by the variability fraction [58]

Q =

n∑
i=1

σ2
Yi

trace
(
CXX

) ; 0 ≤ Q ≤ 1 (50)

The number of the random variables considered has
to be adjusted before the simulation in order to reach
a sufficient quality, e.g. Q > 0.9. However, al-
though the random field approximation seems good,
it may be not suitable for a reliability analysis.
Schorling [59] reported this experience for the ap-
plication to stability analysis of a randomly imper-
fect shell structure. The truncated series explained
above is not suitable, because the criterion is purely
stochastic and does not account for the structural be-
haviour. On the other hand, purely mechanical con-
siderations may not work as well, if they fail to rep-
resent the random field properly.
This is the motivation for the development of a pro-
cedure which selects those mode shapes and ran-
dom variables, which contribute “most” – by means
of stochastic influence – to a certain structural per-
formance, here the buckling load. The Robustness
Analysis, as described briefly before, offers tools for
this purpose.
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Figure 17: Sources of uncertainty in design opti-
mization.

7 ROBUST DESIGN OPTIMIZA-
TION

7.1 CHALLENGES ON VIRTUAL PROTO-
TYPING AND MULTIDISCIPLINARY
OPTIMIZATION

During the last years, many challenges on virtual
prototyping have been occurred. Product life cy-
cles are expected to last for as little as a few months,
and more and more customized products are devel-
oped, e.g. 1700 car models compared to only 900
ten years ago. The engineer’s focus is more and
more on “built-in-quality” and “built-in-reliability”.
The products are developed in the shortest amount
of time, and, inspire of that, they have to be safe,
reliable and robust. Some markets require opti-
mized product designs to be robust, e.g. defense,
aerospace, jet engine, nuclear power, biomedical, oil
industry and other mission critical tasks.
At the same time, the numerical models become
increasingly detailed and numerical procedures be-
come more and more complex. Substantially more
precise data are required for the numerical analy-
sis. Commonly, these data are random parameters.
From this it follows that the optimization process
includes uncertainties or stochastic scatter of de-
sign variables, objective function and restrictions as
shown in Figure 17. Furthermore, the optimized de-
signs lead to high imperfection sensitivities and tend
to loose robustness. Using a multidisciplinary opti-
mization method, the deterministic optimum design
is frequently pushed to the design space boundary.
The design properties have no room for tolerances or
uncertainties. So the assessment of structural robust-
ness, reliability and safety will be more and more
important. Because of that, an integration of opti-
mization and stochastic structural analysis methods
is necessary.

7.2 DESIGN FOR SIX SIGMA

Six Sigma is a quality improvement process to op-
timize the manufacturing process in a way that it
automatically produces parts conforming to the Six
Sigma quality level, as shown in Figure 7.1. Mo-
torola documented more than $16 Billion in sav-

RD SD

X̄

−2σ +2σ

−6σ +6σ

fX(x)

g(X) ≤ 0

P (F)

Figure 18: Normal distribution fX(x) with lower and
upper specification limit on 2σ and 6σ level. Robust
design (RD) and safety design (SD) (≥ ±2σ) de-
pending on chosen limit state function g(X) ≤ 0, e.g.
stress limit state.

ings as a result of their Six Sigma efforts1. Since
then, hundreds of companies around the world have
adopted Six Sigma as a way of doing business.
In contrast, Design for Six Sigma optimizes the
design itself such that the part conforms to Six
Sigma quality even with variations in manufactur-
ing, i.e. quality and reliability are explicit optimiza-
tion goals, as shown in Figure 57. Robust design
is often synonymous to “Design for Six Sigma”
or “reliability-based optimization”. The possible
sigma levels start at 1,2 σ (robust design optimiza-
tion) and go up to 6 σ (reliability-based design opti-
mization) ([60]), as shown in Table 5.
Within the robust design optimization, the statisti-
cal variability of the design parameter is considered.
The most general method for solving robust design
optimization problems is the well established Monte
Carlo simulation method. However, the major short-
coming of this approach is its vast need of com-
putational resources (the number of solver runs re-
quired), and these cannot be presumed in general
situations.
Optimized designs within the sigma level ≤ ±2σ
are characterized as robust design (RD). The objec-
tive of the robust design optimization (e.g. [61–63])
is to find a design with a minimal variance of the
scattering model responses around the mean values
of the design parameters (see [64, 65]).
Other approaches for an evaluation of the design
robustness, e.g. the linear approximation of “scat-
tering” solver responses (see e.g. [66]) or the vari-
ance estimation in genetic programming (see e.g.
[67, 68]), independently of given parameter distri-
butions will not be subject of the following remarks
as they are not to be counted to robust design opti-
mization methods in a stricter sense.
In the reliability-based optimization, the optimiza-

1source: www.isixsigma.com/library/contentc020729a.asp
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tion problem can be enhanced by additional stochas-
tic restrictions ensuring that prescribed probabilities
of failure can not be exceeded. Furthermore, the
probability of failure itself can be integrated into the
objective function. Frequently, the search for the
optimum by means of deterministic optimization is
combined with the calculation of the failure prob-
ability, e.g. using the first- order second-moment
analysis (FOSM) (e.g. [69]). A more promising
combination may under certain circumstances in-
volve the first and second order reliability methods
(FORM/SORM) (e.g. [70–72]).

Within the deterministic optimization, a calculation
of the failure probability of individual designs has
to be performed in order to be able to properly eval-
uate these designs. Therefore, special attention has
to be paid to the cost efficiency of this calculation.
As an example, for smooth and well-scaled objec-
tive functions with few continuous design parame-
ters, the deterministic optimization as well as the
determination of the failure probability that is in-
cluded within the optimization iteration loop may be
performed by means of gradient based programming
(e.g. Sequential Quadratic Programming, see [73]).

In [74] a decrease of the numerical expense of these
two nested iterations is attempted by substituting the
deterministic objective function as well as the limit
state function on which the point of largest probabil-
ity density is searched within FORM by a single ob-
jective function in a hybrid design space. However,
this leads to an enlargement of the design space for
the gradient based programming.

In the reliability-based optimization, frequently ap-
proximation function are applied that at the same
time approximate the design space and the space of
random parameters by means of a meta-model, e.g.
in [4–7]. Successful industrial applications of these
methods can amongst others be found in [75].

In [76], a linear approximation of the limit state
function serves as a constraint of the optimization
problem. An improvement of the optimization result
is tempted in [77] by taking into account the gradi-
ents of the limit state function.

However, in the robust optimization (see [78, 79])
as well, different approximation models in combi-
nation with an appropriate variance determination
are used, e.g. global polynomial approximations and
Kriging models. Their use is restricted to prob-
lems with few random variables and few optimiza-
tion variables (n ≤ 5).

Reliability-based robust design optimization In
reliability-based design optimization, the determin-

istic optimization problem

f(d1, d2, . . . dnd
) → min

gk(d1, d2, . . . dnd
) = 0; k = 1,me

hl(d1, d2, . . . dnd
) ≥ 0; l = 1,mu

di ∈ [dl, du] ⊂ Rnd

dl ≤ di ≤ du

di = E[Xi]

(51)

with nr random parameters X and nd means of the
design parameters d = E[X] is enhanced by addi-
tional mg random restrictions∫

nr. . .

∫
gj(x)≤0

fX(x)dx−P (X : gj(X) ≤ 0) ≤ 0; j = 1,mg

(52)
with the joint probability density function of the ba-
sic random variables fX(x) andmg limit state func-
tions gj(x) ≤ 0 (see Figure 10). The probability of
failure in (52) is calculated applying the reliability
analysis.
Furthermore the objective function can be enhanced
by additional criteria such as minimization of the
probability of failure P (F)

f(d1, d2, . . . dnd
, P (F)) → min (53)

with
P (F) =

∫
nr. . .

∫
gj(x)≤0

fX(x)dx (54)

Variance-based robust design optimization
Within the robust design optimization, the objective
(51) is enhanced by the requirement to minimize
the variances σ2

Xi

f(d1, d2, . . . dnd
, σ2

X1
, σ2

X2
, . . . σ2

Xnr
) → min

(55)
with

σ2
Xi

=
1

M − 1

M∑
k=1

(
xk

i − µXi

)2
7.3 ADAPTIVE RESPONSE SURFACES FOR

NONLINEAR OPTIMIZATION

7.3.1 Introduction
The response surface methodology (RSM) is one of
the most popular strategies for nonlinear optimiza-
tion. Due to the inherent complexity of many engi-
neering optimization problems it is quite alluring to
approximate the problem and to solve the optimiza-
tion in a smooth sub-domain by applying response
surface methodology.
Usually, for a large number of real-life design op-
timization problems the objectives and constraints
are determined as a result of expensive numerical
computations. Furthermore, the function values and
their derivatives may contain numerical noise and
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the calculability of some of the response functions is
domain-dependent, e.g. situations when these func-
tions cannot be evaluated at some points of the de-
sign space. Especially, to solve this kind of opti-
mization the adaptive response surface methodol-
ogy (ARSM) (see e.g. [66, 80–83]) is developed as
a consequent combination of optimization strategy
and response surface methodology.

Of course the accuracy of the approximation com-
pared to the real problem has to be checked and ver-
ified. Mainly three factors influence the accuracy of
a response surface:

1. The number and distribution of support points.
The systematic sampling schemes try to place
the support points in an optimized way accord-
ing to the boundary of the design space and the
distance of the support points. For reasonably
smooth problems, the accuracy of response sur-
face approximations improves as the number of
points increases. However, this effect decreases
with the degree of oversampling.

2. The choice of the approximation function. In
general, higher order functions are more accu-
rate. Linear functions require fewest support
points, but are weak approximations. Quadratic
functions are most popular. The second or-
der polynom results in a smooth approximation
function and is well scaled for gradient based
optimizers. Using polynomials higher than sec-
ond order may only result in higher local accu-
racy with many sub-optima.

3. The design space. The overall possible design
space is given by the lower and upper bound-
aries of the optimization parameters. Of course
the smaller the approximated subregions, the
greater the accuracy. In practical problems we
will start with the overall design space and fur-
ther investigate smaller subregions.

In contrast to the RSM the ARSM uses a subregion
of the global parameter range to approximate the re-
sponses. Starting with a presumably large subregion
the iteration moves and shrinks the subspace till a
solution converges to an optimum. This strategy will
be denoted as move limit strategy. Usually, this is
done using low level trial functions (e.g. linear and
quadratic polynomial functions). The convergence
of the adaption can be improved using advanced
moving least square approximation which is very ef-
ficient by means of a reduction of the response sur-
face variance using additional support points in the
near of the optimal design.

8 NUMERICAL EXAMPLES
8.1 META-MODELING

8.1.1 1D test function
In following examples the approximation quality of
the different surrogate models is investigated. The
first example is given to analyse the convergence
of the approximation quality of the different surro-
gate models depending on the number N of support
points on a non-convex function of the Shepard typ:

ŷ(x) =

n∑
i=1

y(xi)
(

1
‖x− xi‖+ ε

)2

n∑
i=1

(
1

‖x− xi‖+ ε

)2

with xi = 0.75 + zi, zi =
{−15;−8;−6;−3;−1; 0; 1; 4; 7; 15}
and yi = {1;−10;−2; 5;−1; 8; 15;−4; 7; 1}, as
shown in Figure 56. As meta-models Moving Least
Squares with regularized (MLS-R) and exponential
(MLS-E) weighting function, Support Vector Re-
gression (SVR) and Multilayer Perceptrons (MLP)
are investigated. The optimal influence radius of the
exponential weighting function is determined based
on an adaptive D-approach. The results indicate,
that for the deterministic case the SVR approxima-
tion converges much faster than these of MLP and
MLS. For a relative large number of support points
MLP, SVR and MLS the approximation is almost
identical.

8.1.2 2D test function
In this example the well-known two-dimensional
test function [84]

f(x) = 0.01
2∑

i=1

(xi + 0.5)4 − 30x2
i + 20xi (56)

with −6 ≤ xi ≤ 6 for the deterministic case
and for the case of noisy data values is investigated.
For the latter purpose the original function is modi-
fied by adding Gaussian noise with zero mean and
standard error equal to one to each support point
value. In the Figures 19 and 20 the two functions are
shown. The test data set, which is of the same size
as the support data set, is modified in the same man-
ner. Both data sets are obtained by Latin Hypercube
Sampling with uniform distribution. The approxi-
mation quality is evaluated by the normalized mean
error of 10000 regular distributed evaluation points.
In the Figures 21 and 22 the obtained relative mean
errors are shown depending on the number of sup-
port points. The presented values are the average of
100 random sets for each configuration. As meta-
models the polynomial regression, Moving Least
Squares with regularized (MLS-Reg) and exponen-
tial (MLS-Exp) weighting function, Support Vec-
tor Regression (SVR) and Multilayer Perceptrons
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Figure 19: Deterministic 2D test function

Figure 20: 2D test function with additional Gaussian
noise
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Figure 21: Relative mean errors for the deterministic
2D function
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Figure 22: Relative mean errors for the 2D function
with additional noise
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(MLP) are investigated. The optimal influence ra-
dius of the exponential weighting function is deter-
mined based on the test data set. The results indi-
cate, that for the deterministic case the MLP approx-
imation converges much faster than these of SVR
and MLS. For the noisy function the convergence
of MLP, SVR and MLS is almost identical. As ex-
pected the polynomial regression can not converge
to the exact result due to the high complexity of the
function.

8.1.3 Industrial application
In this example the applicability of the presented fil-
ters and approximation models is investigated for
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Figure 23: Industrial application: approximation er-
rors for the surrogate models depending on the ap-
plied filter parameters



Numisheet 2008 September 1 - 5, 2008 – Interlaken, Switzerland

Figure 24: The Quattro Function. Analytical state
function g(x) and limit state function g(x) = 0 in
combination with direct importance adaptive sam-
pling.

a real problem, where we have 46 input variables
and several output quantities which are anonymous.
Again, first the significance and importance filter is
applied and the remaining set of input variables is
used to build up the approximation model. In to-
tal, 100 support points for the surrogate model and
100 test samples to determine the model parameters
and to evaluate the approximation error are used. In
Figure 23 the calculated relative approximation er-
rors for two representative responses are shown de-
pending on the filter parameters. The Figure indi-
cate a significant reduction of the approximation er-
rors for all surrogate models for response 1, whereby
the MLP approach gives the best results. The ap-
proximation errors for response 2 can be reduced
slightly only for the polynomial based approaches
for a significance filter of 97% which corresponds
to 27 remaining input variables. Further reduction
of the variable number leads to increasing approx-
imation errors. The SVR and MLP approximation
errors are for the reduced systems always larger as
for the full system. This shows, that not for all cases
a significant better result can be achieved. This may
be caused by several reasons, e.g. that response 2
contains a large noise fractions or that to many input
variables are important for the approximation. The
usage of an increased number of sampling points
could possibly solve this problem.

8.2 RELIABILITY ANALYSIS

In most practical applications the characteristics of
the state function and the limit state function as e.g.
its shape are not known a priori. Furthermore the
limit state function is often not an analytic function
but derived from a numerical model. It is there-

Figure 25: The limit state function g(x) = 0 is a high-
curved nonlinear one. The random parameters X1

and X2 are normal distributed variables with mean
X̄1 = −3.9, and X̄2 = 1.5 and standard deviation
σX1 = σX2 = 1.

fore necessary to investigate the performance of the
adaptive response surface method with respect to the
following criteria:

• probability or β level

• number of random variables n

• multiple β-points

• state function (high- or slow-curved, continu-
ously differentiable, noisy)

• limit state function (high- or slow-curved, con-
tinuously differentiable, noisy)

Within this example the different results of the pre-
sented adaptive response surface method in compar-
ison with a classic global response surface method
are given. The state function

g(x1, x2) =−
(
x1
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+
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is a two-dimensional fourth order polynomial, as
shown in Figure 24. Furthermore, the limit state
function g(x) = 0 is a high-curved nonlinear one,
as shown in Figure 25. The random parameters X1

and X2 are normal distributed variables with mean
X̄1 = −3.9, and X̄2 = 1.5 and standard deviation
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σX1 = σX2 = 1. In order to obtain the reference
failure probability a direct importance adaptive sam-
pling is done withN = 2000 samples, two iterations
and an initial variance multiplier σ(i=1) = 3. The
given failure probability is P (F) = 4.8907 · 10−6

with a standard error of σP̄ (F) = 1.5813 · 10−7. In
addition, the same adaptive sampling procedure is
used to calculate the failure probability on the re-
sponse surfaces.
For this example, the approximation using the global
2nd order polynomial approximation and a global
central composite design of experiment leads to an
error of 2268000 % in calculation the failure proba-
bility, as shown in the Figures 26 and 27. Using the
global 2nd order polynomial approximation a wrong
most probability failure domain is identified using
importance adaptive sampling.
Applying the new adaptive response surface method
to this state function, as shown in Figures 28 till 31,
leads to accurate estimation of the failure probabil-
ity already after the first adaption with N = 18 state
function evaluations. In summary, using three adap-
tions of the central composite design with in total
N = 36 state function evaluations the error of the
given failure probability is 6% only (see Table 4 for
details).

8.3 RANDOM FIELD

8.3.1 Introduction
As an example for random fields, the reliability of
a cylindrical shell structure with random imperfec-
tions is studied. Within this example, the imper-
fections are discretized by Stochastic Finite Element
methods [53, 57, 58]. It is demonstrated, how Ro-
bustness Analysis is employed in order to identify
the most relevant random variables. The probabil-
ity of failure is computed by Directional Sampling
[85–87] as a reference, and by the Adaptive RSM in
connection with Adaptive Monte Carlo [88].

8.3.2 Structure and Random Field Properties
The reliablity of a geometrically imperfect shell
with properties as given in Fig. 32 is analysed. The
cylinder has a Navier–type suppport along the top
and bottom edges and is loaded along the top edge
with a continuous vertical unit load. The structure
is modelled with a 9-node isoparametric shell finite
element type within the program SLang [89].
A random field is applied on the structure in order
to model geometrical imperfections. The random
properties are coordinate deviations from the per-
fect structure in the cylinder’s radial direction. Thus
the random field is discretized at the nodes of the fi-
nite element mesh. It has zero mean and a standard
deviation of σH = 10−3 mm, which is roughly a
hundredth of the radius. The orthogonal field has
different correlation functions along the perimeter
and height as plotted in Fig. 33. The spatial correla-

Figure 26: Approximated state function g(x) and
limit state function g(x) = 0 using the global 2nd or-
der polynomial approximation.

Figure 27: A wrong most probability failure domain
is identified using importance adaptive sampling.

Figure 28: Approximated state function g(x) and
limit state function g(x) = 0 using MLS.
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Figure 29: Adaptive moving least square approxi-
mation with first and second design of experiment.

Figure 30: Adaptive moving least square approxi-
mation with first till third design of experiment.

Figure 31: Adaptive moving least square approxi-
mation with first till fourth design of experiment.

Wall thickn. [mm] 0.197
Radius [mm] 101.6
Height [mm] 139.7
Young’s mod. [N/mm2] 6.895 · 104

Figure 32: Finite element model of the cylindrical
shell with schematic loads and supports.
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Figure 33: Correlation functions over perimeter
(above) and height (below) and spatial correlation
structure with respect to the marked node (right).
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tion structure with respect to one node on the bottom
edge is visualized, too.
The reliability of the imperfect structure towards sta-
bility failure shall be studied here. The method of
analysis to be applied has to be a compromise be-
tween accuracy and computing time. For the ex-
ample observed here, which shows a pre–buckling
behaviour close to linear and a sudden buckling fail-
ure, the linear buckling analysis suffices. It is very
fast and not prone to being trapped on a postbuckling
equilibrium state.
The limit load for reliability analysis is adopted from
the buckling load of the perfect structure subtracted
a “safety margin”. Two case studies at different
safetey levels have been carried out with limit state
functions as follow:

g(X) =

{
lFbuckling − 34 kN ≤ 0 case 1
Fbuckling − 30 kN ≤ 0 case 2

(57)

Failure is defined as the event, that the limit state
function takes values of less than zero.

8.3.3 Preliminary studies
A Robustness Analysis is performed, wherein all
396 variables of the random field are involved and,
among others, their relations to the critical buckling
loads of the simulated imperfect structures are ex-
amined.
No significant linear correlations could be found.
Instead, strong quadratic correlations are observed
between the first 14 random variables and the crit-
ical load (where “first” indicates those variables
with the highest variances, i.e. highest eigenval-
ues after decomposition of the covariance matrix,
cf. sect. 6.3). For variables of order higher than
14, the quadratic correlation coefficients are close to
zero. The quadratic correlation matrix is displayed
in Fig. 34. The nonlinear dependency becomes ob-
vious by a scatter plot, in Fig. 35, e.g., of input vari-
able no. 1 vs. the critcal load.
Based on the quadratic regression for the buckling
load, with each random variable set in for X suc-
cessively, the coefficients of determination are com-
puted. The sum of all values is less than 100 %.
That means, the variance of the critical load cannot
be fully explained by a quadratic relation to the input
variables. The results are sorted and plotted as bar
diagram, Fig. 36. The strongest influences can eas-
ily be identified. A closer look reveals that not all
of the “first 14” variables (see above) are most rel-
evant, but a few variables assigned to higher order
eigenvectors of the covariance matrix as well. The
eigenvalues and eigenvectors of the covariance ma-
trix (used as random amplitudes and shape functions
in the reliablity analysis) which are selected by the
criterion of the “top 14” coefficients of determina-
tion are that of order 1, 2, 5, 6, 15, 21, 22, 26, 29,
30, 32, 34, 83 and 197.

Figure 34: Matrix (part) of quadratic correlation co-
efficients. The lowest row shows correlations of the
critical load with the first 20 random variables.

Figure 35: Anthill plot of critical load vs. first random
variable.
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Figure 36: The top 14 coefficients of determination
of critical load, quadratic regression model for ran-
dom input variables.
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Figure 37: History of the failure probability and
the standard deviation of the estimator – Directional
Sampling.

Figure 38: Two-dimensional anthill plot of the N =
3000 simulated directions in the subspace of the first
and second random variable.

Figure 39: History of the failure probability and the
standard deviation of the estimator – ARSM.

Figure 40: Moving Least Square approximation of
the state function g(x) in the subspace of variables 2
and 32.

8.3.4 Reliability Analysis – Case 1

For the first limit state condition as given in equa-
tion 57, the reliability of the structure is studied
by means of a “plain” Monte Carlo simulation [as
in 90], with the limit state function as defined by
eq. (57). Three variants are computed: as a ref-
erence, the full representation of the random field,
which employs 396 random variables, is used. Sec-
ond, the “first 14” variables were selected with the
criterion defined by eq. 50 and third, a set of ran-
dom variables with the “top 14” coefficients of de-
termination, cf. sect. 8.3.3. In each case, a sample
with 36000 realizations is generated by Latin Hy-
percube Sampling [91–93]. No other variance re-
duction scheme such as Importance Sampling is ap-
plied. Because the random field defines the struc-
tural geometry and hence the structural behaviour,
the limit state function cannot be programmed ex-
plicitely, but a linear buckling analysis has to be car-
ried out for each sample.

The failure probabilities computed with the different
sets of variables are listed in table 10. The so–called
statistical error, i.e. the standard deviation of the es-
timator of the failure probability, is listed as well, in
order to assess the confidence in the result. The sim-
ulation results with all variables and the “top 14”
selection show a good quality. With the “first 14”
set of variables, the probability of failure is under-
estimated by more than a magnitude. The statistical
error in this case in unacceptably high, despite the
huge sample size. This set of random variables is
able to represent the random field well, but is not
able to model the structural behaviour. The result
obtained with the “top 14” selection is close to the
reference, although it tends to be lower, too. Obvi-
ously, this selection criterion provides a good com-
promise for both modelling the stochastic and the
mechanical problem.
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8.3.5 Reliability Analysis – Case 2
For the second limit state condition of eq. 57, the
reference result is computed by directional sampling
with 3000 samples and in total N = 15690 finite el-
ement solver evaluations (see Figure 38) to give an
estimated failure probability of 1.966 · 10−5 and a
standard deviation of the estimator of 3.927 · 10−6.
The history of the failure probability and the stan-
dard deviation of the estimator are shown in fig. 37.
Applying the new adaptive response surface method
to this state function, as shown in Figures 39 and
40, leads to an accurate estimation of the failure
probability already after the first adaptation. ARSM
starts with an initial D-optimal quadratic design of
experiment with an initial axial multiplier of 2.0 and
4000 samples for each adaptive simulation on the
surrogate model. For the second design of experi-
ment only a D-optimal linear scheme is used. So
in total only N = 229 finite element evaluations
are necessary to estimate the failure probability of
1.392 · 10−5.

8.4 EXAMPLE – ROBUST DESIGN OPTI-
MIZATION OF A DYNAMIC STRUC-
TURE

8.4.1 Structural system
The aim of the classical optimization problem for
structural elements is to minimize the mass while
observing deformation or strength restrictions. As
an example for a robust design optimization the
mass of this simple beam with rectangular cross sec-
tion (w, h) is to be minimized subjected to a har-
monic load. The central deflection wd due to the
dynamic load F (t) has to be smaller than 5mm.
The objective function (i.e. the structural mass m)

Figure 41: Beam with rectangular cross section

and the admissible area are displayed in Figure 42
for assumed values of F0 = 20 kN , ω = 60 rad/s,
E = 3 · 1010N/m2, ρ = 2500 kg/m3, L = 10m
and g = 9.81m/s2.
Furthermore, in many application cases – especially
concerning structural dynamics – the characterizing
parameters are afflicted with stochastic uncertain-
ties. In the present example it is assumed that the
dynamic load amplitude F0 and the excitation an-
gular frequency ω are random variables with Gaus-
sian distribution. The mean values correspond to the
aforementioned nominal values, and both variational

Figure 42: Deterministic objective and feasible de-
sign space. The deterministic optimal design is lo-
cated in the red colored point (w = 0.064, h = 1.00).

Figure 43: Compute conditional probability of violat-
ing constraint depending on h and w by using FORM.

Figure 44: MLS approximation of the dynamic dis-
placment wd depending on h and w by using an
adaptive design of experiment.
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Figure 45: Adaptive design of experiment of random
variable ω and F0 during the reliability analysis. The
limit state function g(X) is defined as a limit state
condition wd ≤ 0.005.

coefficients have been assumed to be 10%. This
yields that the restriction from the dynamic load can
only be met with a certain probability < 1.

8.4.2 Deterministic optimisation
The deterministic optimization is based on an adap-
tive response surface method using the objective
function

f(w, h) = h · w · L · ρ
The deterministic optimal design is located in the
red colored point (m = 1600, w = 0.064, h =
1.00). The required number of solver evaluations is
N = 91 using linear polynomials, as shown in Fig.
49. With respect to the random load parameters the
according failure probability is 11.45% and greater
than the aimed value 1%. The reliability analysis
is based on an ARSM with N = 15 design evalua-
tions, as shown in Fig. 45 and Fig. 46.

8.4.3 Reliability-based robust design optimiza-
tion

Within a reliability-based robust design optimiza-
tion an additional stochastic constraint

P (F : wd ≤ 5mm)− 0.01 ≤ 0

can be used to obtain an optimal design with an ac-
ceptable failure probability. During the optimiza-
tion procedure ARSM moves and shrinks the de-
sign parameter bounds, as shown in Fig. 47 and
48. Fig. 49 illustrates this adaptive design of ex-
periments. In order to calculate the failure probabil-
ity for each individual design using the ARSM pro-
posed in a previous section additional design evalu-
ations on the space of the random variables F0 and
ω are required. To obtain a better performance of
the optimization process it is not necessary to cal-
culate the failure probability in each nominal design

Figure 46: Adaptive sampling of random variable ω
and F0 during the reliability analysis based on the
MLS approximation as shown in Fig. 45.
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INPUT: w vs. INPUT: h, (linear) r = -0.390
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Figure 49: Adaptive design of experiment of design
variable w and h during the optimization. The best
robust design: w = 0.0.064, h = 0.220 with a failure
probability 0.98% < 1%.

of the design space. Using the proposed advanced
moving least square approximation a recycling of all
previous calculated designs is recommended. So, in
totalN = 152 design evaluations are required, start-
ing on the deterministic optimal design to receive a
design with minimal mass with m = 1998 and an
acceptable failure probability of 0.9% < 1%.

9 CONCLUSIONS
In this paper several advanced surrogate models con-
cerning their applicability in the framework of a
robustness evaluation are investigated. Based on
the results of the investigated numerical examples
it can be summarized, it is not possible to define one
best model type which is promising for all applica-
tion. Artificial Neural Networks and Moving Least
Squares work very nicely for low dimensional prob-
lems with less than 10 input variables. For higher
dimensional problems the Support vector Regres-
sion method gives more accurate results especially if
the number of available support points is relatively
small. All types of models work similar for noisy
data as for the deterministic case, if we determine
the model parameters on the basis of an additional
test data set. If this test data set is not available,
the support point set can be subdivided in training
and test data and after the model parameters have
been determined the full data set can be used for the
approximation. For the choice of the most proper
surrogate model for a specific problem it is recom-
mended to compare the approximation quality of the
available models based on a test data set and select
the best approach.
In many real applications not all input variables con-
tribute significantly to the response functions. For
this cases a selection of important variables and an
approximation on the reduced variable set can in-
crease the approximation accuracy dramatically. For

this purpose an efficient significance and important
filter to identify the important input variables is de-
veloped. It can be seen that this filter combination
works very reliable even for noisy response data and
its application can improve the applied approxima-
tion model significantly. For real applications this
stands for a dramatic reduction of the required com-
putational costs within the robustness analysis.
In reliability and robustness analysis, imperfections
of a mechanical or structural system, such as mate-
rial properties or geometrical deviations, are mod-
elled as random fields in order to account for their
fluctuations over space. A random field normally
comprises a huge number of random variables. The
present paper proposes a method to reduce the ran-
dom variables set. This reduction is performed on
the basis on a robustness analysis. In this way, nu-
merical difficulties can be avoided and the efficiency
of the subsequent reliability analysis is enhanced.
This so-called non-parametric structural reliability
analysis is a new method to estimate the safety and
reliability of finite element structures in such cases
where a CAD-based parametrization is not possible
or not meaningful.
In a computer application, the random field has to
discretised. The discretisation points are typically
nodes or integration points of the structural (finite el-
ement) model, i.e. the observed parameter (material
or geometrical property) at each discretisation point
is a random variable. As a consequence, the number
of random variables can be very high, which inhibits
the use of accurate methods of stochastic calculus,
such as variance reducing Monte Carlo techniques
or the Response Surface Method.
The dimension of problem shall be reduced while re-
taining the variability and correlation structure of the
random field. The discretised random field is repre-
sented by the covariance matrix, which can be de-
composed by the Karhunen - Loeve decomposition
into a series of random amplitudes and an orthogo-
nal set of deterministic shape functions. There exist
criteria to choose a subset of variables which on one
hand amount to a large variable fraction, but may not
be relevant for the observed system performance.
A new concept utilizes statistical measures to relate
the input variables with the system performance in
order to identify the most important random vari-
ables and respective shape functions. The aim is
to find a subset consisting of those variables, which
cause the highest reaction of the system in respect
of the chosen limit state criterion. It has been shown
in test examples and real applications, that by this
method it is possible to drastically reduce the prob-
lem dimension. The identification of relevant ran-
dom field mode shapes alone already gives the de-
signer valuable hints on critical points in the anal-
ysed structure.
Finally, a new adaptive response surface method
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is introduced to analyse the design reliability with
high accuracy and efficiency. Whereby the surrogate
model is based on an improved moving least square
approximation combined with an adaptive design of
experiment. In order to obtain a fast simulation pro-
cedure on the response surface an adaptive impor-
tance sampling concept is developed. In this sense,
the proposed method is very robust and efficient for
n ≤ 20 random parameters and combine the advan-
tages of an adaptive design of experiment, adaptive
sampling and efficient response surface methods.
Within the robust design optimization the design pa-
rameters can be random variables themselves and in
addition the objective and the constraint functions
can be random types. Using the robust design opti-
mization we obtain optimized designs such that they
are insensitive to uncertainties within a safety level
of two sigma. The reliability-based optimization in-
cludes the failure probability as constraint condition
or as term of the objective function themselves. So
we obtain design with minimal failure probability
applicable for all safety levels up to 6 sigma.
Robust design optimization can provide multiple
benefits. It permits the identification of those design
parameters that are critical for the achievement of a
certain performance characteristic. A proper adjust-
ment of the thus identified parameters to hit the tar-
get performance is supported. This can significantly
reduce product costs.
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München, MünchenGermany, 1982.

[44] L. Faravelli. Response Surface Approach for
Reliability Analysis. Pubblicazione n. 160,
Dipartimento di Meccanica Strutturale Dell’
Universita di Pavia, PaviaItaly, 1986.

[45] C. G. Bucher and U. Bourgund. Efficient Use
of Response Surface Methods. Bericht Nr. 9 -



Numisheet 2008 September 1 - 5, 2008 – Interlaken, Switzerland

87, Institut für Mechanik, Universitët
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Figure 50: general layout of a multilayer perceptron

hard limit
y = −1 x < 0
y = +1 x ≥ 0

saturating linear
y = −1 x < −1
y = x −1 ≤ x < −1
y = +1 x ≥ 0

positive linear y = 0 x < 0
y = x x ≥ 0

linear y = x

hyperbolic tangent sigmoid y = ex − e−x

ex + e−x

log-sigmoid y = 1
1 + e−x

Figure 51: activation functions commonly used in multilayer perceptrons

No. of random variables 396 14 14
Selection criterion none highest σ2

Xi
highest R2

(all) (“first 14”) (“top 14”)

Prob. of failure Pf 9.7 · 10−3 2.8 · 10−4 3.6 · 10−3

Statistical error σPf
5.2 · 10−4 8.8 · 10−5 3.2 · 10−4

cov(Pf ) 5 % 32 % 9 %

Table 1: Probabilities of failure for different sets of random variables.
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Number of samples
20 50 100 200

Linear correlation errors

10 random variables
MCS 0.54548 0.35110 0.24643 0.17587
LHS 0.06885 0.02176 0.00978 0.00457
LHS-MLCE 0.03192 0.00349 0.00088 0.00025

50 random variables
MCS 0.71477 0.47671 0.34499 0.24678
LHS 0.71788 0.62360 0.01159 0.00466
LHS-MLCE 0.56979 0.27324 0.00694 0.00217

Quadratic correlation errors

10 random variables
MCS 0.50023 0.31610 0.22690 0.15966
LHS 0.57650 0.37468 0.26910 0.19048
LHS-MLCE 0.58594 0.37922 0.27023 0.19145

50 random variables
MCS 0.67240 0.44819 0.32042 0.22941
LHS 0.67659 0.46101 0.35811 0.25216
LHS-MLCE 0.67232 0.46030 0.36005 0.25330

Table 2: Maximum correlation errors for a given sampling size by using Monte Carlo Simulation (MCS), Latin
Hypercube sampling (LHS) and Latin Hypercube sampling with minimized linear correlation errors (LHS-MLCE)

Number of Number of samples
variables 50 100 200 500 1000

10 0.09 s 0.14 s 0.33 s 1.08 s 4.23 s
50 9.6 s 37 s 3 min 17 min 63 min

100 1 min 6 min 15 min 100 min 382 min

Table 3: Computational time on a workstation with AMD Opteron 2.4 GHz for the Latin Hypercube sampling
with minimized linear correlation errors

Number of state Failure Variance of the Accuracy
function evaluations probability estimation σ2

P̄ (F)
error %

Direct adaptive 4000 4.8907 · 10−6 1.5813 · 10−7 0
importance sampling (AS)
Global polynomial 2nd 9 2.1563 · 10−10 2.5303 · 10−11 2268000
order approximation (RSM)
Adaptive response 9 7.9728 · 10−11 6.0763 · 10−12 6134100
surface approximation 18 4.47 · 10−6 1.1713 · 10−7 9
(ARSM) 27 4.4096 · 10−6 1.214 · 10−7 11

36 4.6044 · 10−6 1.1337 · 10−7 6

Table 4: Results of the failure probability of the Quattro Function depending on the applied analysis method.
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Figure 52: Matrix CXX of the linear correlation coefficients with the possible lower and upper bounds according
to a specified confidence interval Ip of 95%.
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Figure 53: Matrix CXX of the most significance linear correlation coefficients used for reduced polynomial
regression models.
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Figure 54: Histogram of the differences between the user-defined and sampled quadratic and linear input cor-
relation matrix CXX . Fitted probability density function with the 99%–fractiles of the coefficients of correlation.
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Figure 55: The state function g(x) of a numerical model is given implicitly, e.g. is result of a finite element
analysis depending on several design responses. The failure condition leads to a unknown deterministic limit
state function g(x) = 0, where fX(x) is the joint probability density function.
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Figure 56: Deterministic 1D test function with N = 9, 18, 35 support points.
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Figure 57: Product Development Phases: within the ”Design for Six Sigma“ the degree of freedom to affect
the product lifetime cost is very high and the cost of design change is propositional moderate in contrast to ”Six
Sigma Design“ concept to optimize the manufacturing processes only.

Sigma Percent Probability of Defects per million Defects per million
level variation failure P (F) (short term) (long term)
±1σ 68.26 3.17 · 10−1 317400 697700
±2σ 95.46 4.54 · 10−2 45400 308733
±3σ 99.73 2.7 · 10−3 2700 66803
±4σ 99.9937 6.3 · 10−5 63 6200
±5σ 99.999943 5.7 · 10−7 0.57 233
±6σ 99.9999998 2.0 · 10−9 0.002 3.4

Table 5: Sigma level depending on the variation of the normal distribution, defects per million and associated
probability of failure P (F). A probability of 3.4 out of 1 million is achieved when the performance target is 4.5
σ away from the mean value (short term). The additional 1.5 σ (long term) leading to a total of 6 standard
deviations are used as a safety margin to allow for “drift of the mean value” in the properties and environment
which the product can see over its lifetime.


