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ABSTRACT 

For a few years, FE-methods are used in industrial applications for simulating the forming process. In the beginning, the 
computations took a great amount of time and the results often were unsatisfactory. Today, the simulation has become an 
integral part for assessing and evaluating forming processes.  

The optimization, i.e. improvement of product characteristics, has been an integral part of forming simulation based virtual 
product development for several years now. On the other hand, the robustness of forming processes is becoming more and more 
focused on recently. In fact, robustness is an additional demand on optimized forming processes. Therefore; a process is 
necessary of optimizing and at the same time securing the robustness. That process is called Robust Design Optimization (RDO). 
The optimization and robustness evaluation are either performed consecutively or simultaneously, and several methods are 
available for this. In the following, existing methods shall shortly be introduced and discussed from a practical point of view 
regarding their appliance. 

From our experience of introducing optimization and robustness evaluation methodology in virtual product development 
processes, it is absolutely necessary to understand booth domains, the design space of optimization as well as the reliability 
space to be able to formulate a successive RDO problem. Therefore, starting with a consecutive approach of using sensitivity 
analysis, robustness evaluation and deterministic optimization is recommended for achieving that knowledge to iterate to an 
optimized robust design. This procedure will be demonstrated at a practical application. 

Of course, the final dream of virtual product development is an automatic Robust Design Optimization procedure with 
dealing simultaneously with optimization and reliability domain. Therefore, methods for a simultaneous performance of the 
optimization and the robustness evaluation will be introduced and their potentials will be discussed.  

For the forming simulation, LSDYNA is used. For the sensitivity study, the robustness evaluation and the optimization 
optiSLang, a general purpose parametric optimization and reliability software package [1] is used. At this the CAE-based 
forming process, the mapping and the result extraction is automated and integrated in optiSLang. After that, optiSLang is 
performing sensitivity analysis, robustness evaluation and optimization. 

Especially for forming simulation, Dynardo developed Statistics_on_Structure (SoS), a statistical post processor with 
interfaces to the BMW forming simulation meta format, to optiSLang and to LSDYNA. A visualisation of statistical measures 
on the FE-mesh facilitates considerably the engineering evaluation of robustness since the result values of a forming simulation 
which are to evaluate are generally spatial correlated values. The statistical measures on the FE structures serve as discussion 
basis for the identification of critical areas and as a basis for evaluating the robustness. In addition, this type of representation 
leads to a high acceptance of the results in the production departments. 

The practical application of robust design optimization in forming simulation shows a high degree of nonlinearity in the 
optimization domain. To ensure robustness it was not possible to identify a constant safety distance which means a deterministic 
design with a maximum FLD_crack value of 0.7 could be robust or have a failure rate of 50%. Finally, it was necessary to check 
the robustness explicitly for all optima candidates. Therefore is seems mandatory to implement robustness evaluation to forming 
simulations in virtual product development processes. 
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1. INTRODUCTION 
For a few years, FE-methods are used in industrial 

applications for simulating the forming process. In the 
beginning the computations took a great amount of time and 
the results often were unsatisfactory. Today, the simulation 
has become an integral part for assessing and evaluating 
forming processes.  

The optimization, i.e. improvement of product 
characteristics, has been an integral part of forming 
simulation based virtual product development for several 
years now. On the other hand, the robustness of the forming 
processes is becoming more and more focused on recently. 
In fact, robustness is an additional demand on optimized 
forming processes. Therefore, a process is necessary of 
optimizing and at the same time securing the robustness. 
That process is called Robust Design Optimization (RDO). 
The optimization and robustness evaluation are either 
performed consecutively or simultaneously, and several 
methods are available for this. In the following, existing 
methods shall shortly be introduced and discussed from a 
practical point of view regarding their appliance. 

From our experience of introducing optimization and 
robustness evaluation methodology in virtual product 
development processes, it is absolutely necessary to 
understand booth domains the design space of optimization 
as well as the reliability space to be able to formulate a 
successive RDO problem. Therefore, starting with a 
consecutive approach of using sensitivity analysis, 
robustness evaluation and deterministic optimization is 
recommended for achieving that knowledge to iterate to an 
optimized robust design. This procedure will be 
demonstrated at a practical application. 

Of course, the final dream of virtual product 
development is an automatic Robust Design Optimization 
procedure with dealing simultaneously with optimization 
and reliability domain. Therefore methods for a 
simultaneous performance of the optimization and the 
robustness evaluation will be introduced and their potentials 
will be discussed.  

 
At the beginning of an optimization process, a 

sensitivity study is recommended. Here within the design 
space, defined by the optimization variables, the sensitivity 
of the optimization variables due to important results, 
objectives, terms of objectives and constraints is 
investigated. As a result, design space reduction, adjustments 
of design boundaries and selection of appropriate result 
values for objective definition can be investigated. Therefore 
with a sensitivity study, the base for a successful 
optimization is set up. 

In general, three optimization method classes are 
available in optiSLang to solve the optimization problem. 
These are: mathematical optimization methods using 
gradients, response surface methods, and stochastic search 
algorithms. Multi objective (Pareto) optimization will be 
mentioned shortly. 

Within the robustness analysis, the sensitivity of the 
unavoidable scatter of environmental conditions and their 
impact on the forming results is evaluated using stochastic 
analysis methodology. In contrast to the sensitivity study, the 
robustness evaluation is performed in the reliability space 

defined by the naturally given scatter of the forming 
material, the forming process or the forming tools. As a 
result the scatter of important forming results and their 
correlation to the input scatter can be investigated. 
Therefore, the robustness evaluation generates the 
information how large a safety distance from critical forming 
results needs to be to generate a robust product. 
Additionally, at the end of the optimization process the 
robustness evaluation quantifies and secures the robustness. 

For industrial application of robust design optimization 
in forming processes, the design space for optimization and 
the reliability space are usually different. That means not all 
scattering variables are allowed to vary for optimization and 
not all optimization variables have a scatter that significantly 
influences the results. Therefore, recycling of robustness 
information from optimization runs and vice versa is very 
limited. That has the consequence that robust design 
optimization using statistical measurements or probabilities 
to quantify robustness usually needs significantly more 
effort than pure deterministic optimization procedures.  

Of course a robust product can be achieved by 
deterministic optimization with applying safety factors, but 
in practice applying “safe” safety factors often leads to very 
conservative designs and it may contradict the optimization 
idea. Therefore, introduction of stochastic analysis to 
quantify robustness will become necessary. 

2. SENSITIVITY STUDIE 
Sensitivity studies are recommended in order to 

investigate the design space chosen for optimization. For 
that purpose, parameter studies which are the variation of 
single parameters belong to the everyday life of an engineer 
for a long time now. In analogy, the design of experiment 
methods which systematically calculate single parameters 
and combinations of parameters, can be used in small 
parameter spaces. If the dimension or the nonlinearity of the 
parameter space increases, stochastic sampling strategies are 
to be favoured for scanning the design space.  

A further advantage of stochastic sampling strategies 
compared to design of experiments is that they furthermore 
permit a statistical evaluation of sensitivities via correlation 
analysis, variation analysis and statistical measurements of 
determination. For description of the sampling methodology 
for scanning the optimization design space and the statistical 
measurements refer to Chapter 3. 

 
Sensitivity studies may enable an adjustment and 

reduction of the parameter space for subsequent optimization 
problems. The previous knowledge obtained from the 
sensitivity studies about sensitivities and coefficients of 
determination of important results is very helpful for an 
adequate formulation of the objective function. Finally, from 
the computation of the sensitivity studies design areas of 
admissible designs can be identified and adequate starting 
points for optimization can be obtained. 

3. ROBUSTNESS EVALUATION 
Based on a forming simulation with a deterministic set 

of input variables, which for example corresponds to the 
mean values of the uncertain variables, a robustness 

   



evaluation creates a set of possible realizations of that 
deterministic design regarding the naturally given input 
scatter. To generate the sample set, stochastic analysis 
methodology is used. Based on the robustness definition, we 
classify variance based robustness evaluation or reliability 
based robustness evaluation (reliability analysis). Because 
the main focuses of the robustness evaluation in the forming 
simulation are statistical variation and correlation 
measurements and not rarely event probabilities, we restrict 
our self in that paper to a discussion of variance based 
robustness evaluation. For a reliability analysis or discussion 
of reliability based robust design optimization, we refer to  
the literature [2]. 

The definition of the uncertainties forms the base for 
stochastic generation of the sampling set. Typical scattering 
input variables of forming simulations are for example 
material values like yield strength, tensile strength, R-values, 
friction values, sheet-thickness or position of blank and tool. 

The characteristic of input scatter is described by using 
statistical distribution functions and it defines the probability 
space of possible realizations. In practical applications, 
existing knowledge of scatter is translated to a suitable 
distribution function. Thereby, the bandwidth reaches from 
detailed data from receiving control of material properties to 
raw estimates of scatter and uncertainties. The software used 
for the robustness evaluation should be able to consider the 
available knowledge regarding the input information 
completely. This requires that suitable distribution functions 
(normal distribution, truncated normal distribution, log 
normal distribution, Weibull distribution or uniform 
distribution) can be used and that correlations of single 
scattering input variables or of partially correlated stochastic 
fields can be considered. The necessity of this shall be 
illustrated using the example of material formulation of 
steel. Commonly the flow curve for the forming simulation 
is described with a set of scattering parameters with 
significant correlation for example between yield stress and 
tensile strength. Only consideration of the complete 
statistical information of distribution function and variable 
correlation leads to a realistic flow curve created from a 
“random” choice of the associated scattering parameters in 
the sampling process.  

 
At this point, it shall be explicitly stated that the 

reliability of statistical measures of the result variables 
depends on the quality of the input information on which the 
scatter of the input variables depends. Therefore, if only raw 
assumptions can be made about the input scatter, then the 
statistical measures should only be evaluated as a trend. 

 
The estimation of statistical measures from a sample of 

possible realizations is naturally afflicted with an error. To 
keep this error as small as possible, Latin Hypercube 
Sampling methods are to be preferably used when creating 
samples. Research, regarding the estimation of linear 
correlation coefficients [3], shows that for the same expected 
statistical error Latin Hypercube Samplings are ten times 
more efficient than Monte Carlo samplings. Thereby, the 
required amount of computations for securing a certain 
confidence interval depends on the total amount of scattering 
input variables plus the total amount of estimated output 

variables. In other words, the probability rises that the 
maximum error of single correlation coefficients increases 
with an increasing amount of output variables. Typically, in 
many engineering disciplines only a small amount of 
convincing result values is considered when doing 
robustness evaluations [4]. When doing robustness 
evaluations of forming simulations, the necessity arises to 
visualize the spatially highly correlated statistic measures on 
the FE-structure and therefore a high number of correlation 
coefficients needs to be estimated. Projection methods [5] 
are used to suppress the “noise” of the statistical errors in the 
estimations of correlation measurements and to identify 
important correlations. 

 
Statistical measures from the histogram form the base 

for the estimation of response variability. Other important 
measures of variation are coefficient of variation, standard 
deviation, Min/Max values or 3-sigma values. In practical 
applications, the robustness of result values is often 
determined by examining if certain boundaries are exceeded. 
The boundary values thereby often are compared with the 
Min/Max values or the 3-sigma-values. A so called 3-sigma-
value is actually a value with a probability of exceedance of 
0.0013. When doing robustness evaluation, sigma-values can 
generally be estimated from the sample set or under 
assumption of distribution hypothesis computed from mean 
value and standard deviation. When doing robustness 
evaluation, one can assume that for estimations from the 
sample set to a few existing supporting points, a 
determination of the fractal values via normalized 
distribution functions is to be preferred [5]. 

 
If the scatter of output variables is not tolerable, it is 

searched for apparent correlations between the variation of 
individual input variables and the variation of individual 
output variables. Correlation coefficients, determined from 
linear and quadratic correlation hypothesis, describe a 
measure of correlation. The correlation coefficients in return 
form the base of measures of determination. Measures of 
coefficients of determination (CoD) are percent wise 
estimates, which ratio of variation of an output variable to 
the variation of individual input variables can be explained 
by using the correlation hypothesis. 

Specific requirements for visualising statistical 
measures on forming simulations 
 

A visualisation of statistical measures on the FE-mesh 
facilitates considerably the engineering evaluation of 
robustness evaluation since the result values of a forming 
simulation which are to evaluate are generally spatial 
correlated values. The statistical measures on the FE 
structures serve as discussion basis for the identification of 
critical areas and as a basis for evaluating the robustness. In 
addition, this type of visualisatioin leads to a high 
acceptance of the results in the production departments. 
Therefore, it is important to visualize the statistic measures 
directly on the component and respectively on the 
corresponding reference mesh and to communicate them in 
the design process. Mean value, variation coefficient, 
standard deviation and min/max values should be 

   



determined in the FE discretisation  and displayed on the FE 
structure [5]. 

Beginning with the linear correlation hypotheses and its 
measures of coefficients of determination as well as 
measures of variation, represented on the FE-structure, a first 
evaluation of robustness is performed. The found “hot” spots 
are then statistically secured on local level with optiSLang. 
Should small measures of coefficient of determination be 
found in areas of decisive scatter on the FE-structure, further 
statistic measures (quadratic correlation hypotheses and 
anthill-plots for nonlinearities in the transmission behaviour) 
become necessary. If robustness cannot be reached with 
adjustments in the reliability domain like reducing input 
scatter or moving mean values for material parameters, a 
new constraint for the optimization is born. Usually a larger 
safety distance against critical results has to be achieved by 
an optimization step. 

 

4. DETERMINISTIC OPTIMIZATION 
Basically, at least three categories of algorithms are 

available for solving the optimization problem: mathematical 
methods of optimization using gradients (gradient method), 
response surface methods (RSM) and stochastic search 
strategies. 
 

Mathematical Optimization Methods using Gradient 
Information 

Mathematical optimization methods [6], which 
determine the search direction by using gradient information, 
offer the best convergence behaviour of the above mentioned 
methods. But they also have the greatest requirements on the 
mathematical composition of the numerical problem 
formulation, on continuity, differentiability, smoothness, 
scalability as well as the accuracy of the gradient 
determination. Because the forming simulation within this 
paper is performed by explicit dynamic solvers, it is knowsn 
that the explicit time integration procedure has too much 
numerical noise to determine values gradient information 
and therefore gradient optimization methodology is not 
recommended for that example. 

 

Response Surface Methods or Meta Models 
If the amount of optimization variables is limited to a 

few variables (5 to 15), then response surface methods [7] 
offer attractive possibilities of optimization. These methods 
create an approximation of the design space by using an 
approximation function on a suitable set of supporting 
points. The support points should be determined by using  an 
optimised support point pattern (D-optimal Design of 
Experiments –DOE) for the approximation function. The 
approximation function usually has smooth mathematical 
properties and it can be used for the search for the optimum 
in the subspace mathematical methods of optimization.. 
Weak point of the response surface method is the proof that 
the approximation at points of interest in the design space is 
sufficient and respectively accurate enough for the 
optimization. To secure the approximation quality 

adaptation, Response Surface schemes are used. Hereby, 
adaptive response surface methods (ARSM) which zoom 
and scroll the approximation space until the optimum 
converges on the response surface, are the most successful 
[8]. The critical value from practical view, is first of all the 
number of optimization variables. Therefore, response 
surface methods are used in small dimension of the most 
sensitive optimization variables which have been determined 
before using sensitivity studies. Designs which have been 
pre-optimized in such a manner can be used as starting point 
for evolutionary search strategies. 

Evolutionary Search strategies 
If the before mentioned algorithms do not lead to the 

desired goal stochastic search methods, of which the 
evolutionary algorithms with the subdivisions genetic 
algorithms [9] and evolutionary strategies [10] are the most 
successful, are used for solving the problem. The term 
stochastic search method is used as “random” event lead to 
the change in design. Important differentiating factor 
between genetic algorithms and evolutionary strategies is the 
method of evolutionary development of the optimization 
variables. The most important evolutionary process of the 
genetic algorithms is the random substitution of genes 
(optimization variables) between two parent designs to 
produce a descendant. The most important evolutionary 
process of evolutionary search strategies is the mutation 
(random change) of single genes of a parental design to 
produce a descendant. 

Genetic algorithms are thereby especially useful for a 
relatively wide-ranged search in the design space. Therefore, 
they are often used as a “global” search strategy. 
Evolutionary strategies are especially useful, if a proper 
previous knowledge is available in the starting generation. 
Starting with the best designs from the sensitivity study, 
evolutionary strategies can be used for local optimization on 
admissible design islands.  

Single and multi objective (Pareto) optimization 
If all optimization terms form only one objective 

function, a single objective optimization problem has to be 
solved. But of course, different weights on the objective 
terms may influence the definition of the optimal design for 
several reasons. As long as the different optimization terms 
are not in conflict or the conflict can be solved within the 
design space, the single objective optimization procedure is 
recommended. 

If a set of Pareto optimal solutions from conflicting 
objectives should be determined, the multi objective 
optimization is necessary. By definition, a design point x is 
said to be Pareto optimal if no objective function criterion 
can be improved without worsening at least one other 
objective criterion. The set of all Pareto Optimal solutions is 
the so called Pareto Frontier or Functional Efficient 
Boundary.  

For multi objective optimization, an optimization task 
with more than one objective and arbitrary constraints are 
formulated.  

It should be mentioned that only in case of conflicting 
objectives a Pareto frontier of compromise solutions exists. 
Because Pareto optimization increases significantly the 

   



effort to obtain the Pareto frontier (compared with the effort 
to obtain one optimum), the user should have a good 
understanding of conflicting objectives before starting a 
Pareto optimization to resolve that conflict. 

In general, again the three main different optimization 
strategies (gradient based, RSM, EA) can be used. 

Gradient based Pareto optimization strategies are 
recommended for smooth (differentiable) problems and they 
are not suitable for explicit time integration. For problems 
with a small set of optimization variables (< 5..10), global 
Response Surface Approximations can be used to identify 
conflicting objectives and to approximate the Pareto frontier. 
In all other cases, Evolutionary based Pareto algorithms like 
Strength Pareto Evolutionary Algorithm [11] are 
recommended. 

5. ROBUST DESIGN OPTIMIZATION 
As pointed out in the introduction, the paper follows for 

the application example a consecutively approach of 
robustness evaluation and deterministic optimization and 
calls that a robust design optimization procedure.  

An automatic procedure has to combine the two 
disciplines and has to introduce explicit robustness 
measurements into the objective function. The crucial 
question is how to come to a meaningful estimate of 
robustness measurements without to much additional effort. 
Looking to our example, it is obvious that the effort to 
measure robustness with 50 to 100 Latin Hypercube samples 
per optimization candidate will result in a very large number 
of external solver calls. 

To avoid this reducing, the number of Latin Hypercube 
samples per optimization candidate could be tested. But 
then, the variability measurements will have lower 
confidence and the probability of missing nonlinear effects 
will increase. Because the FLD_crack values show distinct 
nonlinearity, a too high reducing of the sample size will not 
be successful.  

A common approach for reducing the number of solver 
calls is the use of Response Surface Approximation. In the 
past, there was the limitation that global polynomial 
response surface often results in poor approximations of the 
reliability domain and could only be used for a very small 
number of optimization and reliability variables (5..7). But 
for some years, there are significant improvements in 
developing meta models for reliability analysis using 
Kriging [17,18], Neuronal Networks [14,15,16] or advanced 
Moving Least Square Approximations [2]. There is the hope 
that for robust design optimization tasks with less than 15 
important optimization and reliability variables these models 
work in combination with adaptive D-optimal design of 
experiments and that the effort to create sufficient support 
point sets is not too high. However, our small example 
already has 13 optimization variables and at least 3 
additional important reliability variables and it tends to 
become to large for meta model methodology.  

Often in literature [19,20,21], a procedure of introducing 
some scatter to the optimization variables can be found. 
Then the robustness of the optimization domain regarding 
optimization variable scattering can be investigated without 
spending significant additional computation compared to a 
deterministic optimization procedure. But that procedure 

obviously implies that the reliability domain is part of the 
optimization domain and that no non-optimization variable 
has significant impact on result variability. Even for our little 
example, the procedure would miss the most important result 
scatter sources and therefore will not be successful. 
 
Summarising that a short and not complete discussion a step 
by step approach to identify important optimization and 
reliability variables using sensitivity analysis and robustness 
evaluation is recommended. If enough knowledge about the 
design space as well the reliability space is identified to 
reduce the set of important optimization and reliability 
parameters to less than 10..15 advanced Meta models 
suitable for robustness evaluation promise to offers attractive 
possibilities which complete the state of the art RDO 
methodology. Especially in the reliability domain, reducing 
the variables should be based on a safe knowledge about 
importance and a final robustness evaluation after automatic 
RDO is recommended. 

6. APPLICATION 
For the demonstration of a consecutive approach of 

using sensitivity analysis, robustness evaluation and 
optimization for achieving an optimized and robust design, a 
relatively fast running forming simulation (approximately 1 
hour per run) of a small car body part of BMW was taken. 
For the forming simulation, the explicit FE-solver LS-
DYNA was used. Because mesh refinement is used, the 
resulting finite element meshes of variants are different. To 
generate a common evaluation base for optimization and 
reliability, all results are mapped to a reference FE-mesh. 
 

 

 
Figure 1: left – mesh adter forming simulation 

right – reference mesh 
 

Figure 1 shows a final mesh of forming simulation using 
three steps of mesh refinement and the reference mesh were 
all results are mapped. Figure 2 shows the FLD plot and the 
FLD diagram of the start design. The parameters to optimise 
the problem are 12 bead forces varying from 0 to 350 N and 
the tool binder force is varying from 50 to 300 KN. Figure 3 
shows the location of the beads.Within that design space, an 
optimal and robust forming process is aimed. Main 
evaluation criteria are cracks (red colour at FLD plots) or 

   



risk of cracks (yellow colour at FLD plots). The cracking 
value is defined as the major strain of the considered strain 
state, normalized with the forming limit curve (FLC).To 
ensure sufficient hardening, an additional constraint of 2% 
thickness change as minima in the whole stamping part i 
aimed.  
 

 
Figure 2: FLD plot and diagram of the start design 

 

 
Figure 3: Positioning of the beads 

bead, 1,3,5,7,9,11 are shown, beginning lower left 
 

Sensitivity Study 
Using 100 optiSLang Latin Hypercube Samples in the 

13-dimesional design space of optimization, a sensitivity 
study is performed. From the 100 designs only 2 did not 
show cracks or risk of cracks, therefore it is assumed that the 
design space has very limited islands of admissible design. 
The best design from the sensitivity study is the design_78 
(figure 4) with a maxima FLD_crack value of 0.73 and a 
hardening violation of 60 (sum of violation of thickness 
change from all elements). The other admissible design is 
the design_54 (figure 5) with a maxima FLD_crack value of 
0.96 and a sum of hardening violation of 55. Looking to the 
design vectors (Figure 6), they are obviously very different 
mechanisms to avoid cracking. 

 

 
Figure 4: design_78 of Sensitivity study 

 

 
Figure 5: design_54 of Sensitivity study 

 

 
Figure 6: design vector of design_78 and design_54 

 
Figure 7 shows a projection of the coefficient of 

determination (COD) of linear correlation between all input 
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obustness Evaluation 
Using a consecutive approach for the robustness 

 optimization, the introduction 
of a

catters of all bead forces as 
well tool binder force, scatter of friction value, sheet metal 
thic

 by using a sample set of 50 
opti

ation and FLD_crack variation. The element based CoD 
is varying between 60 and 85%. Figure 8 shows the 
coefficients of variation to the sum of FLD_crack violating 
elements. Taking into account linear and quadratic 
correlation between all optimization parameter variation and 
violating sum of FLD_crack, the variation of a CoD is 
calculated by 65%. Therefore, a significant amount of 
FLD_crack variation comes from a higher order 
nonlinearity, result value generation or numerical noise. 
From our experience, in other areas of virtual product 
development using explicit dynamic solver [13] is 
recommended to ensure a high coefficient of determination 
for result values used for the optimization. If a large part of 
the result variation cannot be explained, that part may be just 
stochastic itself and then this result may confuse the 
optimizer more than it gives a direction. 
 

 
Figure 7: CoD of all inputs to FLD_cracking criteria 

 
Figure 8: CoD for the sum of violating cracks 

 
igure 8 shows no significant ranking of the importa
optimization parameter. Therefore, a reduction of

 
o
d gn space is not recommended at that time. Of course one 
reason for that effect is that all the bead force variation show 
high correlation near the bead position (see for example 
Figure 9) and all act together with the tool binder force. To 
avoid cracking and to secure sufficient hardening, 
everywhere all beads may be necessary to be adjusted. 
Summarising the sensitivity study, two admissible design 

island were found and no reduction of the optimization 
problem is recommended. Because the largest part of the 
design space is violating the cracking criteria and seems to 
be very nonlinear with pure coefficients of determination, 
evolutionary optimization strategies from the two admissible 
design islands seem to be suitable. 

 
Figure 9: coefficient of correlation of force bead 10 to 

FLD cracking criteria 

R

evaluation and deterministic
 safety distance in the deterministic optimization is 

necessary. That safety distance should ensure that the 
stamping process is robust against given uncertainties. 
Therefore, the reliability space is investigated by using 
optiSLang variance based on robustness evaluation. Of 
course, the definition of robustness needs a kind of reliability 
level which defines a probability of violating the crack 
criteria that it should not exceed. A common quality criteria 
is the 3-sigma bound that correlates to a failure probability 
of 0.0013 (1.3 out of thousand). 

 
For robustness evaluation, s

kness, yield stress and R-Value are taken into account. 
The uncertainty of forces, friction, yield stress and R-Value 
are defined with normal distribution functions and  a 
coefficient of variation (CoV) of 0.05. The uncertainty of 
sheet metal thickness is defined with normal distribution 
functions and a CoV of 0.03.  

A robustness evaluation for design_78 from the 
sensitivity study is performed

SLang Latin Hypercube samplings. The Robustness 
evaluation of Design_78 shows 3 violating designs that 
correspond to a failure rate of app. 5%. The cracking or the 
risk of cracks occur in the influence area of bead 5 to 7 (see 
figure 12).  
 

   



 
Figure 10: Histogram yield stress 

 
Figure 10 and 11 show histograms of 100 optiSLang Latin 
Hypercube realizations of yield stress and sheet metal 
thickness input scatter. 
 

 
Figure 11: Histogram sheet metal thickness 

 

 
Figure 12: maxima per element FLD_crack value 

robustness evaluation design_78 
 

The coefficients of determination on finite element level 
(figure 13) as well as for the maximum FLD_Crack value 
(figure 14) are much higher than for the sensitivity analysis. 

That indicates that the local (compared to the huge design 
space of optimization) sensitivities for the robustness have 
less nonlinearity and the numerical noise does not influence 
the result values significantly. Also in contrast to the 
sensitivity study in the optimization design space, figure 14 
shows a clear ranking of importance. Main source of the 
variation in the FLD_crack value is the uncertainty in yield 
stress, followed by scatter from bead force 6. Summarising 
the robustness evaluation of design_78, FLD_crack value of 
0.73 for the deterministic forming simulation does not 
ensure robustness. The FLD_crack variation is mostly 
correlated to the material scatter and shows a high 
coefficient of determination. 

 
Figure 13: coefficient of determination of all 

uncertainties to FLD_cracking criteria 
 

 

Optimization step  
e sensitivity study was the decision to 

use 

 
Figure 14: CoD to maximum FLD_cracking value 

One outcome of th
evolutionary optimization algorithms to improve the two 

admissible designs. One outcome of the robustness 
evaluation was that FLD_crack value of 0.73 is not sufficient 
to ensure robustness. Therefore, the safety distance to limit 
the FLD_crack value is increased and a maximal FLD_crack 
Value of 0.68 is aimed. At the same time, the hardening 
violation should be minimised. It is known from the 
sensitivity study that the two objectives are in conflict, but 
the robustness against cracks is much more important. 

   



Therefore, a weighted single objective function with a 
weight of 1000 at the maximum FLD_crack value and a 
weight of 1 at the hardening violation is used. For 
optimization default optiSLang evolutionary local design 
improvement (1 design start population, 5 new designs per 
generation, adaptive mutation as main evolution factor) is 
used.  

After both evolutionary strategies reach FLD_crack 
valu

 
o design_54 the evolutionary algorith  

incr

 
Figure 16: Design 54_58 evolutionary improvement 

 

es closed to 0.68 the optimization was stopped. For 
Design 78_68 (figure 15) with a FLD_crack value of 0.679 
and a Hardening violation of 57 and for Design 54_58 
(figure 16) with a FLD_crack value of 0.685 and a 
Hardening violation of 61 was reached. Compared to 
design_78 the evolutionary algorithm increased in design 
78_68 moderately the forces of bead 3,4,5,6 and 8,9,10.  
 

 
Figure 15: Design 78_68 evolutionary improvement 

Compared t m
eased in design 54_58 moderately the forces of bead 

1,4,6 and decrease the forces of bead 10 and 11. 
 

 
 

Robustness Check 
To check the robustness of the optimized design with a 

deterministic FLD_crack value of 0.68, the robustness 
evaluation is repeated by using a sample set of 50 optiSLang 
Latin Hypercube samplings around design_78_68. Within 
the 50 forming process realizations for design_78_68, 
maximal FLD_crack value of 0.79 (see figure 17) is 
calculated. With fitting of distribution functions, a maximal 
3-sigma-value of 0.88 (figure 19) is prognosed; therefore the 
design fulfils the defined quality criteria of robustness.  

Again, the reliability domain shows a high coefficient of 
determination and uncertainties in yield stress and friction 
are responsible for more than 50% of the calculated 
FLD_crack scatter (see figure 18). But with the adjustments 
of beat forces the sensitivity of bead and tool binder force 
scatter has changed (compare figure 14 und 18). 
 

 
Figure 17: maxima per element FLD_cracking value 

robustness evaluation design_78_68 
 

 
Figure 18: CoD to maximum FLD_cracking value 

 

   



 

 
 

Figure 19: 3-sigma-value per element FLD_cracking 
value robustness evaluation design_78_68 

 
The Robustness on the second admissible design island 

was also checked by using a sample set of 50 optiSLang 
Latin Hypercube samplings around design_54_58. Because 
of a high failure rate, this evaluation was stopped after 21 
simulations. More than 50% of the forming simulation 
exceeded the maximum FLD_crack values of 1.0 and the 
search of robust designs on that island was stopped. 

 
Continuing the iterative approach of robustness evaluation 
and deterministic optimization, different optimization 
strategies and different safety distances were checked. Table 
1 shows a summary.  
 
Design maximum 

FLD_crack 
optima  
candidate 

Robustness evaluation 
FLD_crack value 

78_sensitivity 0.73  6 % failure  
78_68_EA 0.68 no failure at 50 designs 

max. FLD_crack=0.80 
max. 3Sigma value=0.88 

78_179_EA 0.70 19 % failure 
78_200_ARSM 0.64 23 % failure 
54_58_EA 0.685 50% failure 
 
Table 1 Summary of optimization steps and robustness 
evaluations 
 

Continuing the iterative approach of deterministic 
optimization and robustness evaluation optima candidates 
from different optimization strategies (Evolutionary 
Algorithms and adaptive Response Surface Methodology) 
with different safety distances were checked. Table 1 shows 
a summary. It is clearly to see that no constant safety 
distance was found. 

7.SUMMARY AND OUTLOCK 
A consecutive approach of using sensitivity analysis, 

robustness evaluation and deterministic optimization is 
demonstrated for achieving an optimized robust design. To 

meet the necessary requirements, Dynardo is continuously 
developing the software tool optiSLang and 
Statistics_on_structure. For robustness evaluation of forming 
simulation, especially the implementation of coefficient of 
determination for linear and quadratic correlation hypothesis 
and the projection of important statistical measurements on 
the FE-model create the breakthrough for practical 
applications. 

For the iterative process of sensitivity, robustness and 
deterministic optimization between 300 and 1000 runs are 
necessay. For the example with 4 optimization cycles 600 
runs were used.  

The practical application shows a high degree of 
nonlinearity in the optimization and the reliability domain. 
To ensure robustness, it was not possible to identify a 
constant safety distance which means a deterministic design 
with a maximum FLD_crack value of 0.7 could be robust or 
have a failure rate of 50%. Finally, it was necessary to check 
explicitly the robustness for all optima candidates. 
Therefore, it seems mandatory to implement robustness 
evaluation for forming simulations in virtual product 
development processes.  

If enough knowledge about the design space as well the 
reliability space is identified to reduce the set of important 
optimization and reliability parameters to less than 10..15 
advanced Meta models promise to offers attractive RDO 
methodology. 

In general there are three possibilities to improve the 
robustness, first limit the input scatter of important scattering 
input variables, second move the mean values of scattering 
input variables to move the correlated result scatter or third 
change the transfer behaviour of input scatter to output 
scatter. For successful improve of the robustness of the 
forming part finally the geometry and the forming process 
was redesign. 
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