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Abstract: Many physical quantities in structural design are fields being dis-
tributed on structures and being random processes. The physical structures are
often represented by finite element models, the fields are random variables de-
fined at each mesh node. The analysis of the autocovariance function of such dis-
crete random fields and their reduction to a limited number of mode shapes allow
engineers to eliminate noise and, further, to identify and to quantify important
parameters that influence the random field. This article deals with the opposite,
i.e. the simulation of random fields by taking into account constraints (eg. lower
and upper bounds of a yield stress), arbitrary random distribution functions and
a spatial correlation structure. The presented algorithm is illustrated using the
software package Statistics on Structures applied to an industrial example.

Keywords: random fields, simulation, geometric deviation, modal reduction,
spatial correlation

1 Introduction

Current developments in CAE often employ investigations on robustness, sensitivity or statis-
tics of random effects on finite element structures. For example, an optimization must be ac-
companied by a robustness and reliability analysis. For this purpose, random influences are
measured from experiments or are generated by Monte Carlo methods in conjunction with
FEM simulation [2]. The performance of a structure is then assessed by statistical means
[8]. Many processes involve random quantities being spatially distributed on the examined
structure.

When utilizing random fields one is able to assess random effects as well as their localization.
They provide several levels of insight: First, the distribution of scatter on the structure is
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observed and hot spots are located. Next, random field data can be decomposed into scatter
shapes, which can be ranked by their contribution to the total scatter. These shapes can be
used to reduce the number of random variables (which may be very large depending on the
number of nodes and elements in the FEM mesh) and to reduce noise while only keeping the
essential features of the random field.

DYNARDO [3] developed the software Statistics on Structures (SoS) which is capable of
decomposing random fields into scatter shapes, analyzing random properties on FEM struc-
tures, locating ”hot spots” of variation and investigating correlations. Aside the analysis of
a given set of samples, engineers are also interested in generating random samples with a
specified spatial correlation structure. For example, in sheet metal forming one often wants
to generate random geometric imperfections (induced by the production process) and ana-
lyze the performance of the individual designs later on. This article deals with the simulation
of pseudo-random fields focusing on very large structures. These simulations are usually re-
stricted to small FEM meshes due to computer hardware limitations. Hence one needs to find
suitable approximations which allow to generate random field samples with high numerical
efficiency.

The article starts with an introduction to random fields and its Karhunen-Loeve expansion in
section 2. Section 3 presents the brute force approach to simulation while section 4 enhances
the procedure to very large meshes. Section 5 presents an industrial example illustrating the
performance of the proposed methodology.

The author wants to point out that he originally used a different interpolation method for large
scale FEM structures. During the review process, however, the reviewer proposed the usage
of EOLE which turned out to outperform the original solution leading to major changes of
the direction of this article, see section 4.1.

2 Random fields

Let us consider a scalar field which is defined by a real-valued function value H over an
n-dimensional space, i.e.

H : R→ Rn x→ z, z ∈ R, x ∈ Rn (1)

In most structural applications this function is defined in three-dimensional space, i.e. n = 3.
Let us assume that the field given through H usually varies smoothly in space whereby
points being very close to each other have similar function values. If the field is influenced
by random quantities, then one may measure different realizations of the same field, see
figure 1. Therein, four random samples ω of the same scalar fieldH defined in one dimension
x are illustrated. Two points in space are highlighted in the figure, for which one can compute
statistical measures as if they are individual random variables. For example, one can compute
the mean value function

H̄(x) = E[H(x)] (2)
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Fig. 1: Different realizations of a one-dimensional field. Source: [9]

One can further compute correlation measures for the field values at different coordinates,
for example by the covariance between two points x and y

CHH(x,y) = E[{H(x)− H̄(x)}{H(y)− H̄(y)}] (3)

with auto-covariance function CHH .

The design space x ∈ Rn is infinite large. In engineering applications one is interested in
reducing the number of variables to a small finite number. A tool is to express the fieldH by a
Fourier-type series expansion using deterministic basis functions φk and random coefficients
ck

H(x) =
∞∑
k=1

ckφk(x), ck ∈ R, φk ∈ R (4)

This transforms the field being originally expressed by the unknowns x to a space expressed
by the unknowns c. By truncating the series, a reduction of the number of variables can be
achieved. The Karhunen-Loeve expansion states that an optimal choice of the basis functions
is given by an eigenvalue (”spectral”) decomposition of the auto-covariance function, i.e.

CHH =
∞∑
k=1

λkφk(x)φk(y),

∫
Rn

CHH(x,y)φx(x)dx = λkφk(y) (5)

The obtained basis functions are orthogonal and the coefficients become uncorrelated.

When a scalar field is measured as a distribution on a FEM mesh (or on any other discrete
space), the field H is represented by discrete values, i.e.

Hi = H(xi), i = 1 . . . N (6)

In this case the spectral decomposition is given through

Hi − E(Hi) =
N∑
k=1

φk(xi)ck =
N∑
k=1

φikck (7)
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or in matrix-vector notation
H = Φc + H̄ (8)

Again, a significant reduction in the number of variables can be achieved when truncating
the series after a few items. The field H being measured in terms of a large number of values
Hi (usually in terms of single values per node or finite element) is expressed through a small
number of coefficients ck. The ”scatter shapes” φik define the transformation basis.

By reducing the number of random variables, one improves the statistical significance for a
small sample size (eliminates noise), reduces the numerical effort in statistical analysis and
may simplify the representation of input/output relations based on meta models. The basis
functions should be orthogonal reducing the computational effort for the projection (reduc-
tion) and its inverse transformation. As a side effect the random coefficients are uncorrelated
simplifying the digital simulation of random fields.

3 Simulation of random fields

For simplicity, the consideration is restricted to the following assumptions:

• The distribution type (with CDF F (Xj)) of individual points in the field is the same
for all points j.

• The realization of a random variable may be bounded (due to restrictions in the pro-
duction process).

• Inhomogenity is limited to different mean and standard deviation at individual field
points.

• The spatial correlation is defined by autocorrelation functions, i.e. C(d) = CHH(x,y)

wherein d = d(x,y) denotes the distance between two points. (eg. through correlation
length parameters).

• The spatial correlation is defined in standard-normal space.

3.1 Very small correlation length

If a very small correlation length is chosen, one can assemble a sparse correlation matrix
using piecewise polynomial covariance functions [7], i.e.

Cl,p(d) = (1− d/l)p+ , p > 2 (9)

with correlation length l and polynomial order p. The covariance matrix Covij defining the
covariance between two mesh points xi and xj has compact support. The simulation then
follows the steps:

1. Perform a decomposition of the covariance matrix Cov = LLT , eg. by a sparse
Cholesky factorization.
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2. Simulate N field vectors uk of statistically independent standard-normal random vari-
ables, one number for each node.

3. Apply the correlation in standard normal space for each sample k: zk = Luk.

4. Transform the correlated field samples into the space of the desired random field:
xk,i = F (−1) (N(zk,i)).

This procedure allows the generation of random field samples without approximation or loss
of model information.

The major challenge is the numerical efficiency of the Cholesky factorization. In numerical
tests using a mesh with only 33.000 nodes, a correlation length of 5% of the largest model
dimension already leads to more than 1% non-zero elements in the covariance matrix. In turn
the simulation took more than half an hour on a recent Intel i7 processor (using the Eigen
sparse solver http://eigen.tuxfamily.org). In practice, in particular when simulating geomet-
ric imperfections, a correlation length of 20% - 50% is often used making this approach
unattractive for moderately large meshes and impossible for very large meshes.

3.2 Large correlation length

For a large characteristic length-scale one usually obtains a dense covariance matrix. A
widely used covariance function is the squared exponential function, i.e.

Cl(d) = exp

(
− d

2

2l2

)
(10)

with correlation length l. A spectral decomposition is used to factorize the covariance matrix
by Cov = Φdiag(λii)Φ

T with eigenvalues λi and orthogonal eigenvectors Φ = [φi]. This
decomposition is used to reduce the number of random variables. Given a moderately large
correlation length, only a few (eg. 3-5) eigenvectors are required to represent more than 90%
of the total variability.

The simulation then follows the steps:

1. Perform a decomposition of the covariance matrix Cov = Φdiag(λii)Φ
T and chose c

basis vectors φi being associated with the largest eigenvalues.

2. Simulate N vectors uk of statistically independent standard-normal random variables,
each vector is of dimension c.

3. Apply the correlation in standard normal space for each sample k: zk =
∑c

i

√
λiφiuk,i.

4. Transform the correlated field samples into the space of the desired random field:
xk,j = F (−1) (N(zk,j)).

A global error measure εmay be based on the total variability being explained by the selected
eigenvalues, i.e.

ε = 1−
∑

i=1 cλi∑
i=1 nλi

= 1− 1

n

∑
i=1

cλi (11)
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wherein n is the number of discrete points.

This procedure allows the generation of random field samples with relatively large corre-
lation length parameters. It is based on a model order reduction, i.e. only a portion of the
desired variability can be retained. Furthermore, the covariance matrix is stored as a dense
matrix. Hence, the size of the FEM mesh is effectively limited to ≈ 10.000 nodes.

4 Simulation of random fields on large scale structures

An enhancement of the strategy presented in 3.2 can be used to generate random field sam-
ples on very large FEM meshes. The idea is to select an appropriate subspace. The covariance
matrix is created in this sub space, the same is true for the generation of spatially correlated
standard normal variables. Then one must interpolate the missing field points in the original
space based on the sub-space samples. This interpolation must be chosen in such a way that
it optimally represents the statistical properties of the random distribution at the respective
field points.

For the choice of the sub-space one may use a second mesh with small number of nodes
approximating the fine original FEM mesh. Such a strategy requires the implementation of a
mesh coarsening algorithm. Such an algorithm may be difficult to implement in practice, if
sufficiently accurate coarsening is aimed at for a great variety of mesh topologies (bold vs.
thin-walled structures, multiple finite element types - 1d, 2d, 3d, 2.5d, etc.).

In this article, a very simple and efficient strategy is used to select the sub-space: The node
indices are randomly chosen from the original FEM mesh.

The simulation then follows the steps:

1. Randomly select M support points from the finite element mesh.

2. Assemble the covariance matrix for the selected sub-space.

3. Perform a decomposition of the covariance matrix Cov = Φdiag(λii)Φ
T and chose c

basis vectors φi.

4. Create basis vectors ψi by interpolating the values of
√
λiφi on the FEM mesh.

5. Simulate N vectors uk of statistically independent standard-normal random variables,
each vector is of dimension c.

6. Apply the correlation in standard normal space for each sample k: zk =
∑c

i ψiuk,i.

7. Transform the correlated field samples into the space of the desired random field:
xk,j = F (−1) (N(zk,j)).
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4.1 Expansion Optimal Linear Estimation (EOLE)

An optimal representation of a stochastic field as a linear combination of a subset of its val-
ues was proposed by [4]. It is widely used when simulating random fields, see for example
[6, 1] and the references therein. The method is called Expansion Optimal Linear Estimation
(EOLE) and is an extension of Kriging. Kriging interpolates a random field based on samples
being measured at a sub-set of mesh points. It then minimizes the variance of the interpo-
lation error. When simulating random fields, one is interested in minimizing the variance of
the error when representing the stochastic field by the Karhunen-Loeve expansion while only
the base vectors are known at a sub-set of field nodes.

Assume that the sub-space is described by the field values

yk = {zk,1, . . . , zk,M} = {
c∑

i=1

√
λiφi,1uk,i, . . . ,

c∑
i=1

√
λiφi,Muk,i} (12)

Minimization of the variance between the target random field and its approximation under
the constraint of equal mean values of both results in:

ψi = CovT
zyCov−1yy

φi√
λi

(13)

with Covyy denoting the correlation matrix between the sub-space points and Covzy de-
noting the (rectangular) covariance matrix between the sub-space points and the nodes in
full space. For the choice of an optimal number of required sub-space points per correlation
length, one could further read [5].

4.2 Restoring statistical moments

The mean estimate E(X̂) of the generated random field samples xk is unbiased, i.e. E(X) =

E(X̂). The variance, however, is bounded, i.e. V ar(X) ≥ V ar(X̂). This results directly by
application of two smoothening filters, the modal reduction of the covariance matrix and the
interpolation of the sub-space field samples. Both eliminate parts of the original variability
which will not be present in the final samples.

In order to restore the desired variance, one may reintroduce the eliminated random parts
of the solution in terms of white noise. To achieve this, statistically independent random
numbers ek,j are generated for each sample and for each field point and added to the field
sample vectors before the transformation into the target space takes place. The mean of these
random numbers is zero while the standard deviation can be computed from

Zj = Zj,approx + Zj,error (14)

V ar(Zj) = E

( c∑
j

ψjUj + Zj,error

)2
 = 1 (15)

σ2
j = 1−

c∑
j

ψ2
j (16)
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Additionally to the steps in the previous section, one generates statistically independent
standard-normal random numbers ej,k for each sample k and for each field point j. The
field samples are then computed from xcorrk,j = F (−1) (N (zk,j + σjej,k)).

Furthermore, the vector σ provides a measure for the actual local error arising from the
two steps of model order reduction. A global error can be obtained by relating the sum of
the eigenvalues of the actual correlation matrix to the sum of the eigenvalues of the true
correlation matrix. One first computes the eigenvalues κi of ΨΨT (the nonzero eigenvalues
of the matrix ΨTΨ are the same, but more efficient to compute). Then the global error is

ε = 1− 1

n

∑
i

κi (17)

wherein n is the number of all discrete points.

5 Example

A simple structure from a sheet metal forming application serves as a numerical example.
It is modelled by 4-node shell elements using 8786 finite element nodes. The maximum
dimension is 540. The correlation length parameter is chosen to be 100 in standard normal
space. The distribution of the considered field quantity (eg. a geometric deviation due to
random process parameters) is a truncated Gaussian distribution with mean value 5, standard
deviation 15, lower bound−20 and upper bound 30 - being equal at all nodes. The number of
nodes is small enough to compute a reference solution based on the full model. The sub-space
dimension is chosen to be small (between 50 and 1000 points). Then one may extrapolate
the results to the large-scale case of > 50.000 nodes.

The correlation matrix is expanded using 20 eigenvectors representing> 99.9% variability in
sub-space. Figure 2 shows the support point coordinates using different numbers of support
points in sub-space. Figure 3 shows the first shapes ψi obtained from 50 support points.
For comparison, figure 4 presents the same shapes if the correlation matrix is computed in
full space. The MAC values comparing the full model with individual sub-space shapes are
listed in table 1. The table also lists the global error and the average local error. The average
local error is approximately the the square root of the global error norm obtained by the
eigenvalues κi. The MAC values agree well even for very small sub-space dimensions. Figure
5 shows the corresponding local approximation errors of the spatial correlation. Surprisingly,
the EOLE method approximates the problem very well even for a very small number of
support points.

The local statistics is evaluated at all nodes, i.e. the mean value X̄ , the standard deviation σX
and the 99% quantile value F−1(0.99) = 39.8952 agree with the respective estimators of the
simulated random numbers.
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(a) 50 (b) 200

(c) 800

Fig. 2: Selected support point positions for different numbers of support points

Tab. 1: Errors and MAC values of various shapes (reference of comparison: full model) for
different numbers of support points n.

n global error mean local error MAC ψ1 MAC ψ2 MAC ψ5 MAC ψ10

50 0.055 0.185 0.999 0.999 0.949 0.393
100 0.027 0.151 0.999 0.999 0.999 0.986
200 0.024 0.145 0.999 0.999 0.999 0.999
400 0.023 0.141 0.999 0.999 0.999 0.999
800 0.022 0.140 1 1 0.999 0.999
8786 0.021 0.140 1 1 1 1
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(a) ψ1 (b) ψ2

(c) ψ3 (d) ψ4

Fig. 3: First shapes ψk for 50 support points in sub-space
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(a) ψ1 (b) ψ2

(c) ψ3 (d) ψ4

Fig. 4: First shapes ψk using the full model
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(a) 50 (b) 200

(c) 800

Fig. 5: Local approximation error for different numbers of support points
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6 Conclusion

This article presented two strategies to simulate random fields on large finite element struc-
tures. The strategy for very small correlation length-scale parameters based on a sparse corre-
lation matrix is not yet applicable in practice due to the missing availability of fast numerical
linear algebra packages that provide access to the Cholesky factors of a sparse matrix. It
is, however, possible to efficiently generate random fields with relatively large correlation
length-scale parameters based on approximation methods. Herein, a spectral decomposition
of the covariance matrix in a randomly selected sub-space and interpolation in full space us-
ing the EOLE method was studied. Errors due to the approximation can be easily quantified.
The spatial correlation structure may be well represented even if only a very small number
of support points is used. The presented algorithms will be soon available in the software
Statistics on Structures by DYNARDO Austria GmbH.
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