Transient real-time load stepping on the basis of field meta models (FMOP) for electro-thermal-mechanical FE simulations

36. CADFEM ANS YS Simulation Conference 10.-12.10.2018

Robert Bosch GmbH: K. Riester, Dr. C. Faust-Ellsässer, Dr. T. Rupp DYNARDO: Dr. S. Klonk, Dr. D. Schneider, Dr. S. Wolff

► Project challenge

- ► Introduction of the product
- Motivation
- ► Goal of the project

Solution

- optiS Lang sensitivity analysis
- ► Transient simulation
- ▶ optiSLang's SoS FMOP
- ► FMOP Approximation quality
- Solution postprocessing in optiSLang's SoS

► Results

- ► FMOP result validation
- Conclusion / Outlook

Real-time load stepping on the basis of FMOP for electro-thermal-mechanical FE simulations Electronic power steering

Electronic power steering

Electronic control unit

(ECU)

Power pack

DBC

dunanda

Real-time load stepping on the basis of FMOP for electro-thermal-mechanical FE simulations Electronic power steering

- Different environmental influences lead to fatigue during lifetime
- Typical fatigue failure mechanism on DBCs are bond cracks due to thermal mismatch between aluminum bonds and silicon dies

Al-bond: 23ppm/K

Si die: 3ppm/K

► Engineering goal: No fatigue failures during lifetime

 Automotive Electronics | Riester, Faust-Ellsässer, Rupp
 | DYNARDO: Klonk, Schneider, Wolff | 2018-09-05

 © Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights

- Load and load capacity need to be compared
- State of the art reliability dimensioning and proofs are based on thermal based life time models, e.g.

$$N_f = A \cdot \left(\Delta T_{Global} + \mathbf{k} \cdot \rho \cdot J^2 \right)^{-\alpha} \cdot \exp\left(\frac{\mathbf{Q}}{RT_m}\right)^{(*)}$$

(*)CIPS Presentation: Dürr, Faust-Ellsässer, Pröpper, Riester, 2016

dunando

BOSCH

6 Automotive Electronics | Riester, Faust-Ellsässer, Rupp | DYNARDO: Klonk, Schneider, Wolff | 2018-09-05 © Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Goal of the project

- The goal of the project is to produce an optiSLang SoS Field-Metamodel.
 - It can be used as a replacement for the coupled multi-physics simulation model.
- The Field-Metamodel is a surrogate model that can be used to very rapidly assess new designs.

Automotive Electronics | Riester, Faust-Ellsässer, Rupp | DYNARDO: Klonk, Schneider, Wolff | 2018-09-05 © Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights

Real-time load stepping on the basis of FMOP for electro-thermal-mechanical FE simulations optiS Lang sensitivity analysis

- ► An optiSLang sensitivity analysis is used to generate a sampling data base.
- optiSLang SoS is then used to generate Field-Metamodels (FMOPs) for solution field quantities like temperature and stresses.

Par	ameter	Start designs	Criteria	a Dy	namic sam	pling Othe	er Re	sult desigr
	Name	Parameter type	rence v	onstai	'alue typ	Resolution	Ra	nge
1	tl	Opt.+Stoch.	0		REAL	Continuo	0	2
2	t2	Opt.+Stoch.	0		REAL	Continuo	0	2
3	t3	Opt.+Stoch.	0		REAL	Continuo	0	2
4	t4	Opt.+Stoch.	0		REAL	Continuo	0	2
5	t5	Opt.+Stoch.	0		REAL	Continuo	0	2
6	A1	Opt.+Stoch.	0		REAL	Continuo	-150	150
7	A2	Opt.+Stoch.	0		REAL	Continuo	-150	150
8	A3	Opt.+Stoch.	0		REAL	Continuo	-150	150
9	A4	Opt.+Stoch.	0		REAL	Continuo	-150	150
10	A5	Opt.+Stoch.	0		REAL	Continuo	-150	150
11	Tm	Opt.+Stoch.	0		REAL	Continuo	40	120

P	arameter	Start desig	gns Criteria	Dynamic sampling	Other Result of	lesigns										
IF		Îd	Feasible	Duplicates	Status	A1	A2	A3	A4	A5	Tm	t1	t2	ť3	t4	t5
1	0.1		true		Succeeded	8.75	28.75	98.75	0	0	78.3333	1.175	0.858333	1.375	1.675	0.341667
2	0.2		true		Succeeded	0	0	18.75	0	11.25	79	1.44167	0.258333	1.94167	1.35833	1.19167
3	0.3		true		Succeeded	0	148.75	46.25	0	63.75	115.667	0.958333	1.675	1.275	0.341667	1.44167
4	0.4		true		Succeeded	0	0	0	33.75	131.25	62.3333	1.99167	0.108333	0.0416667	0.275	0.825

Automotive Electronics | Riester, Faust-Ellsässer, Rupp | DYNARDO: Klonk, Schneider, Wolff | 2018-09-05

Real-time load stepping on the basis of FMOP for electro-thermal-mechanical FE simulations ANS YS WB model

- ANSYS WB: connects 3 different physics and data transition between 3 ANS YS Mechanical models:
 - Transient electrical loading leads to an increase in the temperature of the domain and, subsequently, to thermally induced stresses.
- ANSYS APDL: Define load transients based on external parameters
- SoS for ANSYS: Plugin for Mechanical exports result data directly to SoS for FMOP creation

 Automotive Electronics | Riester, Faust-Ellsässer, Rupp
 | DYNARDO: Klonk, Schneider, Wolff | 2018-09-05

 © Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights

- The Field-Metamodel is based on the non-linear combination of a random shape decompositioning of the solution fields.
- ► FMOP is an enhancement of the classical optiS Lang metamodelling technique

▶ New input-parameter combinations can be used to approximate the full output field.

Inputs:

- Current amplitude signal
- Ambient temperature
- Transient temperature field

16 Automotive Electronics | Riester, Faust-Ellsässer, Rupp | DYNARDO: Klonk, Schneider, Wolff | 2018-09-05

- Like for a classical optiSLang Metamodel, CoP values can be used to assess, whether the metamodel has a high approximation quality.
- ► For the generated Field-Metamodel the F-CoP (Total) values are very high (nonlinear thermal solution, linear mechanical)
- The field metamodel has a very good approximation quality for all results (stresses, temperatures)

	ITEMP	oS1	oS2	oS3	oSEQV	oSX	oSXY	oSXZ	oSY	oSYZ	oSZ	oTEMP
F-CoP[A]		71.15 %	66.21 %	68.33 %	69.73 %	64.84 %	67.39 %	67.64 %	🥥 69.68 %	73.72 %	77.16 %	9 73.58 %
F-CoP[Tm]		8.74 %	5.64 %	🥥 3.99 %	0 7.43 %	3.70 %	0.44 %	0.61%	4.93 %	1.44 %	6.68 %	3.47 %
F-CoP[Total]		94.26 %	94.28 %	96.95 %	96.62 %	96.59 %	96.73 %	96.73 %	97.37 %	97.67 %	98.33 %	99.69 %
F-CoP[amp[iTEMP][node]_shape[1]]		31.86 %	36.91 %	34.47 %	31.53 %	38.35 %	38.41 %	38.73 %	33.48 %	32.19 %	25.31 %	9 17.49 %
F-CoP[dt]		12.80 %	9 15.89 %	16.53 %	16.07 %	9 17.88 %	18.05 %	18.28 %	15.66 %	15.16 %	13.56 %	12.01 %

Automotive Electronics | Riester, Faust-Ellsässer, Rupp | DYNARDO: Klonk, Schneider, Wolff | 2018-09-05
© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights

Real-time load stepping on the basis of FMOP for electro-thermal-mechanical FE simulations Solution postprocessing in optiSLang/SoS

Visualized are solution fields for the temperature and the equivalent stress for the contact surface.

All field quantities are available for statistical postprocessing in SoS.

A Field-Metamodel (FMOP) can be produced for these result quantities.

 18
 Automotive Electronics | Riester, Faust-Ellsässer, Rupp
 | DYNARDO: Klonk, Schneider, Wolff | 2018-09-05

Real-time load stepping on the basis of FMOP for electro-thermal-mechanical FE simulations Mid-point Temperature over time [node 87767] 250 _____

• Excellent approximation result for transient temperature and contact stresses.

Output at point of the contact:

Automotive Electronics | Riester, Faust-Ellsässer, Rupp | DYNARDO: Klonk, Schneider, Wolff | 2018-09-05

Real-time load stepping on the basis of FMOP for electro-thermal-mechanical FE simulations **FMOP result validation**²⁵⁰

• Excellent approximation result for transient temperature and contact stresses.

Output at point of the contact:

2.0 Automotive Electronics | Riester, Faust-Ellsässer, Rupp | DYNARDO: Klonk, Schneider, Wolff | 2018-09-05

Real-time load stepping on the basis of FMOP for electro-thermal-mechanical FE simulations **Transient solver: As optiSLang Custom Algorithm**

- Based on the optiSLang Custom Algorithm interface, a custom user interface has been generated to solve for transient field inputs/outputs.
- ▶ Realized as custom node in optiSlang.

Parameter Start designs	Criteria Settings Other Result designs	
SoS Metamodel directory	<put directory="" here=""></put>	
Input amplitudes file	<pre>cput comma seperated file here. Format: timestep, current Amplitude\n, e.g. 0.2,10\n0.3,20\n></pre>	
Number of amplitudes to comput	e -1	
Ambient temperature	70	

Automotive Electronics | Riester, Faust-Ellsässer, Rupp | DYNARDO: Klonk, Schneider, Wolff | 2018-09-05

© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights

Systems
 E Algorithms

Real-time load stepping on the basis of FMOP for electro-thermal-mechanical FE simulations Transient solver: As SoS script

- Based on SoS script API one can solve the system given a load transient directly from Windows Explorer
- Integrated rainflow counting to assess critical number of load cycles and visualization of expected lifetime in SoS:
 fatigue (Result lifetime, type node)

21 Automotive Electronics | Riester, Faust-Ellsässer, Rupp | DYNARDO: Klonk, Schneider, Wolff | 2018-09-05 © Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights

- ► The generation of the SoS FMOP was successful.
- ► User-friendly export of data through ANS YS plugin
- Automatic FMOP generation and solution using predefined SoS scripts.

- ► FMOP allows the rapid evaluation of field quantities without FEM: 24.85 the need to run a full simulation model.
- ► The field metamodel can be saved in a database (QM).
- Team based access can be organized on a high-level using optiSLang technology.

7 Automotive Electronics | Riester, Faust-Ellsässer, Rupp | DYNARDO: Klonk, Schneider, Wolff | 2018-09-05

Résumé

Real-time load stepping on the basis of FMOP for electro-thermal-mechanical FE simulations Conclusion / Outlook

SoS FMOP enables to go one step deeper on the load side of the V model and reach a geometry independent parameter for comparing load and load capacity

- ► Outlook:
 - FMOP validation for different design elements is ongoing
 - FMOP could enable real time simulation to identify remaining life time of the ECU
 - ► Web access & Digital Twin application

dynando 🛛 🙆 BOSCH

THANK YOU For your attention

