Image: Constraint of the second s

Robustheitsbewertungen gegenüber Geometrie- und Materialtoleranzen für einen Pressverband

Frei verwendbar © Siemens AG 2018

siemens.de

SIEMENS AG

Building Technologies

Digital Factory

Financial Services

Mobility

Power and Gas

Power Generation Services

Energy Management

Process Industries and Drives

Frei verwendbar © Siemens AG 2018Seite 211/10/2018

SIEMENS AG – Process Industries and Drives

Drives

Frei verwendbar © Siemens AG 2018 Seite 3 11/10/2018

<section-header>

G 2018, Alle Rechte vorbehalten

Motivation

Produktion

- herstellungsbedingte
 Geometrieschwankungen
- herstellungsbedingte
 Schwankungen der
 Materialkennwerte

Montage

 Pressverband beeinflusst Steifigkeit Einflusses auf dynamischen Kennwerte?

Frei verwendbar © Siemens AG 2018Page 411/10/2018

Gliederung

Frei verwendbar © Siemens AG 2018Page 511/10/2018

Modellierung

- Nominalgeometrie und Referenzimperfektion
- Beschreibung des Workflows
- Robustheitsanalyse 1: Geometrievariation
- Robustheitsanalyse 2: Geometrie- & Materialvariation
- Zusammenfassung

Modellierung

Streuung der Geometrie

 Abweichungen der Geometrie auf Gehäuseinnenseite

Streuung der Materialparameter

 Blechpaket: Orthotropes, linear elastisches Materialverhalten

• $E_R, E_T, E_L, \nu_{TR}, G_{TL}, \nu_{LR}$

- Gehäuse: Isotropes Von-Mises Materialverhalten
 - $\varepsilon_U, \sigma_U, E, \nu$

Frei verwendbar © Siemens AG 2018Page 611/10/2018

Streuung beim Kontaktverhalten

- Flächenpressung
- Resultierende Kräfte im Pressverband

Streuung des dynamischen Verhaltens

- Eigenfrequenzen
- Eigenformen

FE - Modellierung

Blechpaket und Gehäuse

Kontaktelemente mit Kontakt-Offset zur Generierung des Pressverbands

Frei verwendbar © Siemens AG 2018 Seite 7 11/10/2018

Blechpaket

FE-Simulationsschritte

Frei verwendbar © Siemens AG 2018

Seite 8 11/10/2018

FE- Modalanalyse

Frei verwendbar © Siemens AG 2018 Seite 9 11/10/2018

Vorgespannte Modalanalyse

- Kontakteinstellungen der Vorspannung:
 - "wahren Status verwenden"

Abgleich der Eigenmoden

- Abgleich der aktuellen gerechneten Eigenmoden mit der Referenz mittels Modal Assurance Criterion (MAC)
- Verwendung von rstmac
 - rstmac,file.rst,1,1all,`..\data\reference.rst\file.rst`,..

Gliederung

Frei verwendbar © Siemens AG 2018 Page 10 11/10/2018

• Modellierung

- Nominalgeometrie und Referenzimperfektion
- Beschreibung des Workflows
- Robustheitsanalyse 1: Geometrievariation
- Robustheitsanalyse 2: Geometrie- & Materialvariation
- Zusammenfassung

Nominalgeometrie vs. Referenzimperfektion

Nominalgeometrie aus CAD

Frei verwendbar © Siemens AG 2018 Seite 11 11/10/2018

Referenzimperfektion aus Oberflächenscannmessungen realer Teile

Ergebnisse – Nominalgeometrie vs. Referenzimperfektion

Kontaktstatus

Frei verwendbar © Siemens AG 2018 Seite 12 11/10/2018

Ergebnisse – Nominalgeometrie vs. Referenzimperfektion

Anpressdruck [MPa]

Frei verwendbar © Siemens AG 2018 Seite 13 11/10/2018

Ergebnisse – Nominalgeometrie vs. Oberflächenscanmessung

Plast. Dehnungen

Oberflächenscanmessung

Annahmen für Nominalgeometrie konservativ

Frei verwendbar © Siemens AG 2018 Seite 14 11/10/2018

Ergebnisse – Nominalgeometrie vs. Referenzimperfektion

SIEMENS Ingenuity for life

Modalanalyse – Nominalgeometrie

Frei verwendbar © Siemens AG 2018

Seite 15 11/10/2018

Gliederung

Frei verwendbar © Siemens AG 2018 Page 16 11/10/2018

• Modellierung

- Nominalgeometrie und Referenzimperfektion
- Beschreibung des Workflows
- Robustheitsanalyse 1: Geometrievariation
- Robustheitsanalyse 2: Geometrie- & Materialvariation
- Zusammenfassung

Workflow 1

0.02

10

NORMAL

NORMAL

Workflow 2

M: Ballweg PD LD P R&D 2 2 3

SIEMENS

Ingenuity for life

Modellierung der Geometrieimperfektionen

SIEMENS Ingenuity for life

Frei verwendbar © Siemens AG 2018 Seite 19 11/10/2018

Modellierung der Geometrievariationen

Reihenentwicklung der Imperfektionen

Sos[®]

SIEMENS Ingenuity for life

Gliederung

Frei verwendbar © Siemens AG 2018Page 2111/10/2018

- Modellierung
- Nominalgeometrie und Referenzimperfektion
- Beschreibung des Workflows
- Robustheitsanalyse 1: Geometrievariation
- Robustheitsanalyse 2: Geometrie- & Materialvariation
- Zusammenfassung

Ergebnisse – Robustheit 1: Geometrievariation

Erklärbarkeit der kontaktspezifischen Resultate mittels Coefficient of Prognosis (CoP) (optiSLang):

- Imperfektionen mit größtem Einfluss verstreut über gesamte Geometrie
- Hohe Erklärbarkeiten der Gesamtgrößen

Frei verwendbar © Siemens AG 2018 Seite 22 11/10/2018

Ergebnisse – Robustheit 1: Geometrievariation

2100 Moden gemäß MAC shape 5%/10% 7%/12% 3%/6% tracking sortiert 1900 Rechnung Nominalgeometrie 1700 5%/10% [z] 1500 1300 1100 90%-Quantil-Interval I 2%/5% I 3%/7% Rechnung 90%-Quantil-Intervalbereich / Mittelwert Referenzimperfektion (Max-Min) / Mittelwert 1%/2% ■ 1%/1% ■ 1%/1% [■] 1%/1% [■] 1%/2% 900 B: Modal Figure Type: Total Deferry Frequency: 10055 H Unit rom 1211 2017 (401 **1%/3%** 700 500 3 5 7 9 11 1 Mode

Maximale relative Min-Max-Streuung = 12% (Mode 11)

Reduktion um max. 9%, Erhöhung um max. 3% gegenüber Referenzimperfektion

Frei verwendbar © Siemens AG 2018 Seite 23 11/10/2018

Gliederung

Frei verwendbar © Siemens AG 2018 Page 24 11/10/2018

• Modellierung

- Nominalgeometrie und Referenzimperfektion
- Beschreibung des Workflows
- Robustheitsanalyse 1: Geometrievariation
- Robustheitsanalyse 2: Geometrie- & Materialvariation
- Zusammenfassung

Ergebnisse – Robustheit 2: Geometrie- & Materialvariation

Erklärbarkeit der kontaktspezifischen Resultate mittels CoP (optiSLang):

 Erklärbarkeiten insbesondere durch die geometrischen Imperfektionen geprägt, Materialinputs spielen keine / untergeordnete Rolle

Ergebnisse – Robustheit 2: Geometrie- & Materialvariation

shape tracking sortiert

Moden gemäß MAC

 Maximale relative Min-Max-Streuung = 15% (Mode 11)

 Reduktion um max. 11%, Erhöhung um max. 4% gegenüber Referenzimperfektion

Frei verwendbar © Siemens AG 2018 Seite 26 11/10/2018

M: Ballweg PD LD P R&D 2 2 3

SIEMENS

Ingenuity for life

Ergebnisse – Robustheit 1 vs. Robustheit 2

 Ähnliche Verteilung,
 5%- und 95%-Quantile äquivalent

Anzahl Elemente in Kontakt

Anzahl sticking Elemente

PHO:	700	Max.	1001	
Mean value:	1497.66	Standard deviation:	200.825	
CoV:	0.134092			
5%-Quantil	= 1219 , 95%-C	uantil = 1801		-
Berechnung	1594			
Berechnung	2526			

Frei verwendbar © Siemens AG 2018 Seite 27 11/10/2018

Robustheit 1:

Robustheit 2:

Materialvariation

Geometrie- &

Geometrievariation

Ergebnisse – Robustheit 1 vs. Robustheit 2

Frei verwendbar © Siemens AG 2018

Seite 28 11/10/2018

Gliederung

Frei verwendbar © Siemens AG 2018 Page 29 11/10/2018

- Modellierung
- Nominalgeometrie und Referenzimperfektion
- Beschreibung des Workflows
- Robustheitsanalyse 1: Geometrievariation
- Robustheitsanalyse 2: Geometrie- & Materialvariation
- Zusammenfassung

Ergebnisse – Robustheit 1 vs. Robustheit 2

	Statische Analyse (Herstellung Pressverband)	Modalanalyse	
Nominalgeometrie vs. Referenzimperfektion	Referenzimperfektion: Reduzierung von Radialkraft (Faktor 0.64) und Kontaktfläche (Faktor 0.33)	Referenzimperfektion: Reduzierung der ersten 13 Eigenfrequenzen zw. 1 und 4%	
Robustheit 1: Geometrievariation	 Mittelwerte ~ Referenzimperfektion CoV Kontakfläche, Radialkraft etc. zw. 12 und 17% 	 Mittelwerte ~ Referenzimperfektion Streubereich d. Eigenfrequenzen zw. 1 und 12% 	
Robustheit 2: Geometrie- & Materialvariation	 Mittelwerte ~ Referenzimperfektion CoV Kontakfläche, Radialkraft etc. zw. 12 und 17% 	 Mittelwerte ~ Referenzimperfektion Streubereich d. Eigenfrequenzen zw. 1 und 15% 	
	Geometrievariationen haben wesentlich stärkeren Einfluss auf Kontaktverhalten und Vorspannkraft	Geometrie- <u>und</u> Materialvariationen haben Einfluss auf die Eigenfrequenzen des Systems	

Zusammenfassung

Oberflächenscanmessungen der Gehäuseinnenseite: Aufgebracht mittels Meshmorphing (SoS), keine Neuvernetzung notwendig

Einfluss der **Oberflächenvariation** und **Materialvariationen** auf statische und dynamische Systemeigenschaften mittels **Robustheitsanalyse** berücksichtigt (optiSLang & SoS)

Ermittlung der Schwankungsbreiten und Einflussseparation Material-Geometrie durch zwei unterschiedliche Robustheitsanalysen

Statisches Verhalten durch Geometrievariation geprägt Dynamisches Verhalten durch Geometrie- und Materialvariation geprägt

Frei verwendbar © Siemens AG 2018 Seite 31 11/10/2018

Kontakt

Marion Ballweg SIEMENS AG

Vorfeldentwicklung/Simulation

E-Mail: marion.ballweg@siemens.com

siemens.com

Frei verwendbar © Siemens AG 2018Seite 3211/10/2018