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Summary A large number of problems in manufacturing processes, production planning, finance and
engineering design require an understanding of potential sources of variations and quantification of the
effect of variations on product behavior and performance. Traditionally, in engineering problems uncer-
tainties have been formulated only through coarse safety factors. Such methods often lead to overdesigned
products.

First, this paper gives an overview over the state of the art in reliability analysis methods to describe
model uncertainties and to calculate reliability and safety. Different methods exist, but they all have a
limited area of application. The aim of the first part is to investigate the applicability of certain methods
for specific problems and to give a general indication, which method is appropriate for certain problem
classes, implemented in optiSLang .

In addition, a new adaptive response surface method is introduced to analyse the design reliability with
high accuracy and efficiency. Whereby the surrogate model is based on an improved moving least square
approximation combined with an adaptive design of experiment. In order to obtain a fast simulation
procedure on the response surface an adaptive importance sampling concept is developed.

Several numerical examples show the applicability of this concept for highly nonlinear state and
limit state functions and multiple design points and separated unsafe domains. Furthermore, within a
structural reliability analysis example a discretization of random fields in combination with a robustness
evaluation to identify the relevant random variables is introduced. The so-called nonparametric structural
reliabilty analysis is a new method to estimate the safety and reliability of finite element structures in
cases where a CAD-based parametrization is not possible or not meaningful. The probabilistic and
structural analysis tasks are performed with the optiSLang , SoS and SLang software packages.

Keywords reliability analysis, random fields, robustness evaluation, adaptive response surfaces, mov-
ing least square approximation, adaptive design of experiment, adaptive importance sampling, latin
hypercube sampling
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Figure 1: Performance of methods for stochastic
analysis. a.) Monte Carlo simulation (MCS), b.)
Response Surface Method (RSM), c.) First Order
Reliability Method (FORM).
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Figure 2: Probability density function fX(x) of
the normal and lognormal distribution with mean
and standard deviation.

1 Introduction

Within many engineering fields, structural design must meet challenging demands of cost-effectiveness.
This leads to light-weight, highly flexible, and consequently vulnerable structures. In order to assess
potential risks associated with such a design, the structural analysis must take into account available
information on the randomness of loads and structural properties. It means that the analysis should
include reliability estimates in an appropriate manner.

Considering the properties of the computational analysis realistically it is necessary to take into ac-
count some uncertainty. This uncertainty can be conveniently described in terms of probability measures,
such as distribution functions. It is a major goal of stochastic computational analysis to relate the un-
certainties of the input variables to the uncertainty of the model response performance. The stochastic
models for these uncertain parameters can be one of the following:

• Time-independent random problems (Reliability analysis)

– Random variables (constant in time and space)

– Random fields (correlated fluctuations in space)

• Time-dependent random problems (First passage reliability analysis)

– Random processes (correlated fluctuations in time)

Within a computer implementation it becomes necessary to discretize random fields/processes in time
and space. This immediately leads to a considerable number of random variables.

The aims of stochastic analysis include safety measures such as time-invariant failure probabilities or
safety indices, response variability in terms of standard deviations or time-variant first passage probabil-
ities. The available solution methods for these tasks are exact methods (numerical integration, Monte
Carlo simulation – MCS), approximate (first and second order reliability method – FORM/SORM, re-
sponse surface method - RSM) or other techniques (e.g. based on Markov vector theory in stochastic
dynamics).

The stochastic analysis software SLang (– the Structural Language) includes several methods solving
all off these stochastic models. Currently, optiSLang (– the optimizing Structural Language) supports
methods to analyse random variables only. In addition, the SoS (– Statistics on Structures) add-on tool
to optiSLang provides methods to solve random fields.

Although Monte Carlo methods are most versatile, intuitively clear, and well understood, the compu-
tational cost (the number of computational runs required) in many cases is prohibitive. Thus approxima-
tions become important, which can be based e.g. on the response surface methods (RSM) or first/second
order reliability methods (FORM/SORM). For the feasibility of response surface approaches it is quite
essential to reduce the number of variables to a tractable amount. This may require extensive sensitivity
analysis in order to identify the relevant random variables. This is particularly important for random
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Property SD/Mean %
Metallic materiales, yield 15
Carbon fiber composites, rupture 17
Metallic shells, buckling strength 14
Junction by screws, rivet, welding 8
Bond insert, axial load 12
Honeycomb, tension 16
Honeycomb, shear, compression 10
Honeycomb, face wrinkling 8
Launch vehicle , thrust 5
Transient loads 50
Thermal loads 7.5
Deployment shock 10
Acoustic loads 40
Vibration loads 20

Table 1: Sources of uncertainties (Klein et al. (1994)) given by standard deviation (SD) and mean value
as shown in Figure 2.

variables arising from discretization of random fields or processes. In this context, close coupling between
the tools for stochastic and computational analyses is essential. Simplifications can be based on the
following items

• Global variance-based sensitivity or robustness analysis of the structural response with respect to
the random variables. Again, this aims at reducing the number of random variables needed.

• Concentrate random sampling in the region which contributes most to the total failure probability.
This is generally called “importance sampling”. It is important to note that most importance
sampling strategies work best with a low number of random variables.

• Approximation of the numerical response by a class of simple mathematical functions. This is the
so-called “response surface method”. Again, it is vital that the number of random variables be kept
small.

As a very simplistic rule-of-the-thumb, Fig. 1 gives the accuracy/speed ratio for some solution methods
as mentioned above. However, there are situations in which MCS can be comparably fast or FORM can
be comparably accurate.

Probabilistic analysis typically involves two areas of statistical variability as shown in Table 1. The
first group consists of the uncontrollable uncertainties and tolerances. These include material property
variability, manufacturing process limitations, environmental variability, such as temperature, operating
processes (misuse) and result scatter arising from deterioration. The second group – the controllable
parameters – involves design configurations, geometry, loads, constraints and manufacturing process
settings.

2 Reliability Analysis

2.1 Introduction

Numerical methods, e.g. for structural analysis have been developed quite substantially over the last
decades. In particular, finite element methods and closely related approximations became the state of
the art. The modeling capabilities and the solution possibilities lead to an increasing refinement allowing
for more and more details to be captured in the analysis. On the other hand, however, the need for more
precise input data became urgent in order to avoid or reduce possible modeling errors. Such errors could
eventually render the entire analysis procedure useless. Typically, not all uncertainties encountered in
structural analysis can be reduced by careful modeling since their source lies in the intrinsic randomness
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of natural phenomena. It is therefore appropriate to utilize methods based on probability theory to assess
such uncertainties and to quantify their effect on the outcome of structural analysis.

The following chapter presents an overview of probability-based methods to describe model uncer-
tainties and to calculate reliability and safety. Different methods exist, but they all have a limited area
of application. The aim of this chapter is to investigate the applicability of certain methods for spe-
cific problems and to give a general indication, which method is appropriate for certain problem classes,
implemented in optiSLang .

2.2 Formula of the Failure Probability

Safety and reliability analysis warrants the exclusion of damage and design collapse during the life time.
Probability of surviving is the numerical quantity of safety and reliability and the probability of failure
is the complement.

We can define any undesired or unsafe state of a response as an event F out of the set of all random
variables X such a way that the assign state function g(x) is less or equal to zero. Generally, failure (i.e.
an undesired or unsafe state of the response) is defined in terms of a limit state function g(.), i.e. by the
set F = {X : g(X) ≤ 0}. Frequently, Z = g(X) is called safety margin. As indicated in Fig. 3, the

F = {(F,L,Mpl) : FL ≥ Mpl} = {(F,L,Mpl) : 1− FL
Mpl

≤ 0}

Figure 3: Structural system and several unique failure conditions.

definition of the limit state function is not unique. The failure probability is defined as the probability
of the occurrence of the unsafe event F :

P (F) = P [{X : g(X) ≤ 0}] (1)

This quantity is unique, i.e. not depending on the particular choice of the limit state function. The
response behavior near the failure state is most important in the reliability analysis. The random design
parameters, such as loadings, material parameters and geometry, are the set of basic random variables
X which determine the probabilistic response of numerical model. The failure condition is defined by a
deterministic limit state function

g(x) = g(x1, x2, . . . , xn) ≤ 0

as shown in Fig. 2.2. The failure probability of a design is given by

P (F) = P [X : g(X) ≤ 0] =
∫

n. . .

∫
g(x)≤0

fX(x)dx (2)

where fX(x) is the joint probability density function of the basic random variables.

2.3 FORM - First Order Reliability Method

The FORM-Concept is based on a description of the reliability problem in standard Gaussian space.
Hence transformations from correlated non-Gaussian variables X to uncorrelated Gaussian variables U
with zero mean and unit variance are required. This step is called Rosenblatt-transformation. Then a
linearization in performed in u-space. The expansion point u∗ is chosen such as to maximize the PDF
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Figure 4: The state function g(x) of a numerical model is given implicitly, e.g. is result of a finite element
analysis depending on several design responses. The failure condition leads to a unknown deterministic
limit state function g(x) = 0, where fX(x) is the joint probability density function.
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Figure 5: Transformations from correlated non-Gaussian variables X to uncorrelated Gaussian variables
U with zero mean and unit variance. Gradient-based optimization for design point search (most probable
point β-point). Approximation of the limit state function g(u) by a linear function g̃(u) in standard
Gaussian space.
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within the failure domain. Geometrically, this coincides with the point in the failure domain having the
minimum distance β from the origin. From a safety engineering point of view, the point x∗ corresponding
to u∗ is called most probable failure point or design point .

FORM (Shinozuka (1983); Hasofer & Lind (1974); Hohenbichler & Rackwitz (1988); Tvedt (1983);
Breitung (1991)) is one of the most effective methods in reliability analysis, since the number of required
function evaluations is relatively small.

In order to determine the failure probability P (F) in Eq. (2) the limit state function g(u) can be
approximated by a Taylor expansion ḡ(u). The optimal expansion point is the design point with coordi-
nates (s1, .., sN ), which is the point on g(u) closest to the origin in Gaussian space. The distance β to
the origin is called the reliability index.
Hence transformations from correlated non-Gaussian variables X to uncorrelated Gaussian variables U
with zero mean and unit variance are required.

From the geometrical interpretation of the expansion point u∗ in standard Gaussian space it becomes
quite clear that the calculation of the design point can be reduced to an optimization problem:

u∗ : uT u → Min.; subject to: g[x(u)] = 0 (3)

This leads to the Lagrange-function

L = uT u + λg(u) → Min. (4)

Standard optimization procedures can be utilized to solve for the location of u∗. In optiSLang the
NLPQLP algorithm is used, which is based on a sequential quadratic programming (SQP) method.
Within this method the gradients of the objective function and the restrictions need to be determined,
which is performed using finite differences. For further details see of the optimization method see Schit-
tkowski (2004).

In the next step, the exact limit state function g(u) is replaced by a linear approximation ḡ(u) as
shown in Fig. 2.2. From this, the probability of failure is easily determined to be

P (F) = P [Z ≤ 0] ≈ P
[
Z̄ ≤ 0

]
(5)

=
∫ 0

−∞
fZ̄(z̄)dz̄ = FZ̄(0) (6)

= Φ

(
−E

[
Z̄
]

σZ̄

)
= Φ

(
− 1

1
β

)
(7)

= Φ (−β) (8)

This result is exact, if g(u) is actually linear. In general FORM gives a good approximation of the failure
probability.

2.4 Plain Monte Carlo Simulation

The most general method to solve stochastic problems in structural mechanics is the well established
Monte Carlo simulation method (for details see e.g. Rubinstein (1981)). However, the major shortcoming
of this approach is its vast need of computational resources (the number of finite elements runs required)
which cannot be provided in general situations.

Generally the failure probability is defined as the probability that the limit state function attains
non-positive values:

P (F) = P [g(X1, X2, . . . Xn) ≤ 0] (9)

This can be written as an expected value:

P (F) =
∫ ∞

−∞

∫ ∞

−∞
. . .

∫ ∞

−∞
Ig(x)fX1...Xn

dx1 . . . dxn (10)

in which Ig(x1 . . . xn) = 1 if g(x1 . . . xn) ≤ 0 and Ig(.) = 0 else.
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β Probability of Number of required Number of required
level failure P (F) samples N using PMC samples N using LHS
1 1.59 · 10−1 630 63
1.5 6.69 · 10−2 1,496 150
2 2.28 · 10−2 4,395 440
2.5 6.21 · 10−3 16,103 1,610
3 1.35 · 10−3 74,075 7,408
3.5 2.33 · 10−4 429,787 42,979
4 3.17 · 10−5 3,155,964 315,596
4.5 3.40 · 10−6 29,404,819 2,940,482
5 2.87 · 10−7 348,304,627 34,830,463

Table 2: Number of required samples to obtain a statistical error σP̄ (F)/E[P̄ (F)] = 10 % using plain
Monte Carlo simulation (PMC) and latin hypercube sampling (LHS).

The analytical evaluation of this integral is in most practical problems impossible. This is due to the
fact, that an exact determination of the primitive for many functions Ig(x)fX1...Xn

is not possible, or
that no analytical expression for the limit state function g(x) can be derived, e.g. if g(x) is approximated
by a limited number of complex FE-solutions.

In order to determine P (F) in principle all available statistical methods for estimation of expected
values are applicable with

P (F) = E[Ig(x)] (11)

Samples are generated with respect to the probability density function of each variable and for each
sample the response of the structure is determined. If N independent samples x(k) of the random vector
X are available then the estimator

P̄ (F) =
1
N

N∑
k=1

Ig(x(k)) (12)

yields a consistent and unbiased estimate for P (F). But in case of small values of P (F) and small
values of N the confidence of the estimate is very low. The variance σ2

P̄ (F)
of the estimate P̄ (F) can be

determined from

σ2
P̄ (F) = E[(P̄ (F)− E[P̄ (F)])2]

=
P (F)− (P (F))2

N

and especially for small failure probabilities

σ2
P̄ (F) ≈

P (F)
N

The required number N of simulations is independent of the dimension n of the problem.
Unfortunately for small failure probabilities P (F) a large number of samples is necessary in order to

obtain a good estimator. Depending on the statistical error ε = σP̄ (F)/E[P̄ (F)] the number of required
samples is

N =
1

ε2 P (F)

Assuming that the statistical error ε = 0.1 the required number is given by

N =
100

P (F)

For small failure probabilities and complex problems with a computational expensive algorithm for the
calculation of a single sample the evaluation of such a large number of samples is not acceptable (Table
2).
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Figure 6: Latin hypercube sampling.

2.5 Latin Hypercube Sampling

Latin hypercube sampling was introduced by McKay et al. (1979). The domain of each random variable
is decomposed into intervals with equal probability. The number of intervals corresponds to the number
of samples. One value from each interval is selected at random with respect to the probability density in
the interval. Combining the intervals of a random variables, the so called hypercubes are formed. This
is illustrated in Figure 6 and in a similar way the representative point within one hypercube. The N
representative values obtained for X1 are paired in a random manner (equally likely combinations) with
the n values of X2 and so on until Xn. These N random combinations are called the latin hypercube
samples. If the samples are combined in a random manner, artificial correlations are introduced, which
can be avoid by regrouping the samples Iman & Conover (1982); Stein (1987). An estimate of the failure
probability can be calculated by

P̄ (F) =
1
N

N∑
k=1

Ig(x(k))

The required number N of simulations is independent of the dimension n of the problem. Assuming that
the statistical error ε = 0.1 number of required samples should be

N ≥ 10
P (F)

wherein P (F) is the expected probability of failure, as shown in Table 2). .

2.6 Importance Sampling (Weighted Simulation)

2.6.1 General Concept

In order to reduce the standard deviation σP̄ (F) of the estimator to the order of magnitude of the
probability of failure itself N must be in the range of N = 1/P (F). For values of P (F) in the range
of 10−6 this cannot be achieved. Alternatively, strategies are employed which increase the ”hit-rate“ by
artificially producing more samples in the failure domain than should occur according to the distribution
functions, as shown in Figure 7. One way to approach this solution is the introduction of a positive
weighting function hY(x) which can be interpreted as density function of a random vector Y. Samples
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Figure 7: Original and importance sampling probability density functions.

are taken according to hY(x). The probability of failure is calculated with

P (F) =
∫ ∞

−∞

n. . .

∫ ∞

−∞
I(g(x))

fX(x)
hY(x)

hY(x) dx

and the estimator is

P̄ (F) =
1
N

N∑
i=1

I(g(xi))
fX(xi)
hY(xi)

= E

[
I(g(x))

fX(x)
hY(x)

]
(13)

From the estimation procedure as outlined it is seen that the variance of the estimator P̄ (F) becomes

σ2
P̄ (F) = E[(P̄ (F)− P (F))2] = E

( 1
N

N∑
i=1

I(g(xi))
fX(xi)
hY(xi)

− P (F)

)2


A useful choice of hY(x) can be based on minimizing σ2
P̄ (F)

. Ideally, such a weighting function should
reduce the sampling error to zero which cannot be achieved in reality, since such a function should have
the property (Rubinstein (1981)):

hY(x) =


1

P (F)
fX(x) : g(x) ≤ 0

0 : g(x) > 0

This property requires the knowledge of P (F) which, of course, is unknown. Special updating procedures
such as adaptive sampling (Bucher (1988)) can help to alleviate this problem.

2.6.2 Importance Sampling Procedure Using
Design Points (ISPUD)

A common possibility to determine the sampling density function within an importance sampling ap-
proach is used in the ISPUD algorithm of Bourgund & Bucher (1986). At first the design point is
determined, which is analog to the FORM performed using NLPQLP. The mean value of the normal
distributed sampling density function is the design point, whereas the variance is the same as the original
density function. Although the method is applicable in Gaussian as well as in original space, it seems
to be advantageous to perform the sampling in Gaussian space, especially if the random variables are
correlated or not normal distributed. In this case the variance of the sampling density function (which
equals 1 for the random variables transformed to Gaussian space) can be increased by a certain factor
in order to spread the samples further from the design point. The failure probability is calculated using
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Eq. (13). The advantage of this method is its independence with respect to the non linearity of the limit
state function close to the design point, but similar to FORM the determination of the correct design
point or the existence of multiple design points can cause errors. This concept can be accomplished in
three steps:

• Determine the design point x∗ as shown in the context of the FORM-procedure.

• Choose a weighting function (sampling density) hY(x) with the statistical moments E[Y] = x∗ and
CYY = CXX in the following form (multi-dimensional Gaussian distribution)

hY(x) =
1

(2π)
n
2
√

detCXX

exp
[
−1

2
(x− x∗)T C−1

XX(x− x∗)
]

• Perform random sampling and statistical estimation according to Eq. (13).

The efficiency of this concept depends on the geometrical shape of the limit state function. In particular,
limit state functions with high curvatures or almost circular shapes cannot be covered very well.

2.6.3 Adaptive Sampling

Another possibility to determine the sampling density function within an importance sampling approach
is used in the adaptive sampling algorithm. This procedure, introduced by Bucher (1988), is based on the
importance sampling technique, which concentrates the samples within the regions close to the failure
domain.

Since the failure probability P (F) is a priori the unknown variable, the optimal sampling density
function hY(x) is approximated as follows. The sampling density function for the first iteration step
is either the original density function fX(x) or an enlarged density function, where the variance of the
original function is multiplied by a factor between 1 and 3 in order to have more samples within the
failure domain. The latter approach is especially suitable for small failure probabilities.

After the first iteration the new sampling density function hY(x) is determined, so that the first and
second moments coincide with the ones of the samples, that are within the failure domain:

E[Y] = E[X|g(x) ≤ 0] (14)
E[(Y − Ȳ)(Y − Ȳ)T ] = E[(X− X̄)(X− X̄)T |g(x) ≤ 0] (15)

This iteration process is repeated several times. In practise 3 iterations are in general sufficient.
The problem of this method is a robust estimation of the covariance matrix in Eq. (15). If the number of
samples within the failure domain is relatively small, which can be either due to a small number of total
samples or a small failure probability, the covariance matrix is often not positive definite, and as a result
the transformation of Y to uncorrelated random variables is not possible.
In order to avoid this problem, a restriction for the number of samples N is introduced:

N i
x|g(x)≤0 > n3 (16)

where N i
x|g(x)≤0 is the number of samples in the failure domain for the i-th iteration and n the number

of random variables. This restriction means, that at least n35 samples are required to reducing the
statistical uncertainty within the calculation of the covariance matrix of the adaptive joint probability
density function.

Usually, an initial variance multiplier greater than 3 leads to numerical errors calculating hY(x).
Otherwise a small factor tends to an insufficient number of samples in the unsafe domain. A recommended
choice of the initial variance multiplier and the initial samples size N (i=1) could be the following procedure.
In order to reduce the initial sample size the simulated initial probability of failure in case of random
variables on the Gaussian space should be sufficient large, for example

P i
sim(F) = Φ (−β) = 1− Φ

(
β − 0
σ(i=1)

)
= 0.08...0.16
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P (F) 1.587 · 10−1 2.275 · 10−2 1.35 · 10−3 3.169 · 10−5 3.401 · 10−6

n/β 1 2 3 4 4.5
2 1/63 1.8/63 2.5/70 3/90 3/120
5 1/790 1.8/920 2.5/1100 3/1400 3/1900
10 1/6250 1.8/7300 2.5/9000 3/11000 3/15000
15 1/21093 1.8/25000 2.5/30000 3/37100 3/50600
20 1/50000 1.8/60000 2.5/70000 3/90000 3/120000

Table 3: Initial variance multiplier σ(i=1) and minimal initial samples size N (i=1) depending on β and
the number of random variables n.

So the initial variance multiplier in Gaussian space is equal to the initial standard deviation σ(i=1) and
should be

1 ≤ σ(i=1) =
β

Φ−1(1− P i
sim)

≤ 3

So the number of the initial number of samples N (i=1) has to be greater than

N (i=1) >
N

(i=1)
x|g(x)≤0

P i
sim

and minimal N (i=1) > 63 using latin hypercube sampling for each iteration step. Obviously an estimation
of the β level or the failure probability itself is a priori required to determine the number of samples for
the initial iteration, which might in many cases not be given. An approximation can either be obtained
by engineering experience or by other methods as e.g. FORM. If in any iteration step this condition is
violated, the adaptive procedure is stopped and the failure probability is calculated from the current
iteration step.

Depending on the expected most probable failure point β and the number of random variables n the
initial variance multiplier σ(i=1) together with the minimal initial samples size N (i=1) of the Table 3 are
useful.

2.7 Response Surface Methods

2.7.1 Global Polynomial Approximation

Although Monte Carlo methods are most versatile, intuitively clear, and well understood, the computa-
tional cost (the number of finite element runs required) is in many cases prohibitive. Thus approximations
become important which can be based e.g. on the response surface method. Normally, the state function
g(X) of a system response is described implicitly, e.g. through an algorithmic procedure within finite
element analysis.

Alternatively, the original state function can be approximated by a response surface function g̃(x)
which has polynomial form (Rackwitz (1982); Faravelli (1986); Bucher & Bourgund (1987, 1990); En-
gelund & Rackwitz (1992); Rajashekhar & Ellingwod (1993)).

A commonly used method for response value approximation is the regression analysis. Usually, the
approximation function is a first order or second order polynomial (Box & Draper (1987); Myers (1971)).
As an example in the (n = 2)-dimensional case, k-responses (k = 1, ...,m) will be approximated using a
least square quadratic polynomial in the following form:

g̃k(x) = β1x1k + β2x2k + β11x
2
1k + β22x

2
2k + 2β12x1kx2k + εk (17)

Herein the term εk represents the approximation errors. The approximate coefficients β can be calculated
using the least square postulate

S =
m∑

k=1

ε2k = εT ε → min
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Additional, the limit state function g(x) = 0 themselves can be interpolated by second order polynomials
(Ouypornprasert & Bucher (1988); Bucher et al. (1988)).

One of the major advantages of the response surface method lies in its potential to selectively deter-
mine the number of structural analyses of the support points. This is especially helpful if some overall
knowledge on the system behavior - particularly near to the failure region - is a priori available. By such
means the computational effort can be substantially reduced.

On the other hand, the global approximation schemes widely used in the application of the response
surface method can be quite misleading due to the lack of information in certain regions of the random
variable space. Standard second order polynomial approximations are not sufficiently flexible. So, the
estimation of the failure probability using this global approximation leads to large errors, in particular
for small failure probabilities P (F) < 10−2 and a number of random parameters of n > 5. It is therefore
required to avoid such undesirable approximation errors at reasonable computational effort.

2.7.2 Adaptive Response Surface Method

Moving least square approximation A commonly used approximation method with minimized the
regression error within the support point values is the moving least square method. The main advantage
of this method is the flexibility for the approximation of highly nonlinear state and limit state functions.
The proposed method is suitable for computing the reliability of complex models and is intended to
provide reasonably accurate estimates of failure probabilities while maintaining computational efficiency.

Moving least square (MLS) functions can approximate locally clustered support point samples with
higher local approximation quality. In addition MLS improve the response surface model using additional
support points. MLS is formulated as

ŷ(x) =
nb∑
i=1

hi(x)ai(x) = hT (x) a(x) (18)

with a predefined number of basis terms nb, a vector of basis functions h and the associated vector of
the coefficients a. Lancaster & Salkauskas (1986) formulates a local MLS approximation as

ŷ(x,xj) =
nb∑
i=1

hi(xj)ai(x) = hT (xj) a(x)

with j = 1, ..., ns support points. The approximate coefficient vector a can be calculated using the
weighted least square postulate

S(x) =
ns∑

j=1

w(x− xj) (ŷ(x,xj)− y(xj))
2

=
ns∑

j=1

w(x− xj)

(
nb∑
i=1

hi(xj)ai(x)− y(xj)

)2

= (Ha− g)T W(x)(Ha− g) → min

(19)

with the weighting function w(x− xj) and

g = [y(x1) y(x2) ... y(xns)]
T

H = [h(x1) h(x2) ... h(xns)]
T

h(xj) = [h1(xj) h2(xj) ... hnb
(xj)]T

W(x) = diag[w(x− x1) w(x− x2) ... w(x− xns)]

The least square error S(x) may be a minimum in case that the partial gradients are zero.

∂S(x)
∂a

= 0
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So using the equation (19) a linear equation system gives an estimation of the coefficient vector a

a(x) = M−1(x) B(x) g (20)

with

M(x) = HT W(x) H

B(x) = HT W(x)

Cause the matrix of the basis function M(x) should be non-singular always a sufficient number of ns

immediate neighbor support points have to be available. The number must be at least as large as number
of the basis terms. The equation (20) inserted in (18) gives the approximation function

ŷ(x) = hT (x) M−1(x) B(x) g

An accurate as possible approximation quality requires a weighting function which is larger than zero
w(x − xj) > 0 and monotonically decreasing w(‖x − xj‖) inside of a small sub space Ωs ⊂ Ω. So the
influence of supports far from the actual coordinates is unimportant. A uniform weighting is given by a
symmetry condition w(x− xj) = w(xj − x) = w(‖x− xj‖). Usually, an exponential function is used in
this way:

w(‖x− xj‖) =

 e
−

0@‖x− xj‖
Dα

1A2

‖x− xj‖ ≤ D
0 ‖x− xj‖ > D

(21)

with a constant
α =

1√
− log 0.001

and a influence radius D to choose. It is obvious that the smaller D the better the response values of
the support points fit the given values. But as mentioned above at least nb support points have to be
available in every point to be approximated. Therefore it is possible that a D has to be choosen which
leads to a large shape function error at the support points

To avoid these problems a new regularized weighting function was introduced by Most & Bucher
(2005):

wR(‖x− xj‖) =


ŵR(‖x− xj‖)

ns∑
i=1

ŵR(‖x− xi‖)
‖x− xj‖ ≤ D

0 ‖x− xj‖ > D

(22)

with

ŵR(d) =

((
d

D

)2

+ ε

)−2

− (1 + ε)−2

(ε)−2 − (1 + ε)−2
; ε � 1 (23)

It is recommended by the authors to use the value

ε = 10−5

This new regularized weighting function works better than the exponential function. But if the ratio of
the minimal distance among the supports to the extent of areas where are no supports becomes worse
the same problems occur again. As a matter of fact a large D is needed to approximate for coordinates
where no support points are around and a small D is needed for coordinates where are a lot of support
points in order to reach a minimal approximation error. To comply with this conditions it is necessary
to use a function d(x) for the influence radius instead of a constant D.
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Table 4: Numbers of required support points for different DOE schemes
Number of support pointsa

Linear approximation Quadratic approximationb

Number of Koshal D– Full Koshal D– Full Central

Variables Linear optimalc factorial Quadr. optimald factorial composite

n (linear) (m = 2) (quadr.) (m = 3) (CCD)

1 2 2 2 3 3 3 3
2 3 4 4 6 9 9 9
3 4 6 8 10 15 27 15
4 5 8 16 15 23 81 25
5 6 9 32 21 32 243 43
6 7 11 64 28 42 729 77
7 8 12 128 36 54 2187 143
8 9 14 256 45 68 6561 273
9 10 15 512 55 83 19683 531

10 11 17 1024 66 99 59049 1045
11 12 18 2048 78 117 177147 2071
12 13 20 4096 91 137 531441 4121
13 14 21 8192 105 158 1594323 8219
14 15 23 16384 120 180 4782969 16413
15 16 24 32768 136 204 14348907 32799

aIncluding only one center point (nc = 1).
bAlso usable with linear approximation approach.
cBased on full factorial DOE (m = 2), with 1.5 times linear koshal designs.
dBased on full factorial DOE (m = 3), with 1.5 times quadratic koshal designs.

Adaptive design of experiment In particular, these response surfaces can be adaptively refined to
consistently increase the accuracy of the estimated failure probability. This is especially suitable for
the reliability analysis of complex nonlinear structures. An arbitrary number of check points even in
high local concentration can be used without approximation problems. Using deterministic design of
experiment, the necessary number of support points become very high with an increasing number of
random variables, as shown in Table 4.

To decrease the number of support points in an optimized way, the so called D-optimality criterion is
used. A discussion of this criterion is presented by Box & Draper (1971). The effectiveness of a design
in satisfying the minimum variance (D-Optimal) criterion is expressed by the D-Efficiency of the design.
In Myers & Montgomery (1995), more exact specifications of the D-Optimal criteria and further criteria
called alphabetic optimality criteria are described. However, the first design of experiment in the first
iteration should explore the random space including safe and unsafe domain as accurate as possible. A
possible approach is given in Klingmüller & Bourgund (1992) with

xi = x̄i ± fσxi

whereby
f = Φ−1(P (F)) = 3, . . . , 5

is a factor depending on the assumed failure probability. Bucher & Bourgund (1987) give an efficient
possibility to adaption a design of experiment in the next iterations with

xM = x̄ + (xD − x̄)
g(x̄)

g(x̄)− g(xD)

with
xD = E[X|g(x) ≤ 0]

as shown in Figure 2.7.2. This is achieved by a combination of random search strategies (based on the
adaptive sampling approach) as well as deterministic search refinement. In such a way for the most
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practical examples 3 till 6 iteration steps are necessary for a sufficient convergence. So this adaptive
design of experiment using a D-optimal linear or quadratic design in combination with the improved
moving least square approximation is suitable up to n ≤ 20 random parameters.

3 Examples

3.1 Introduction

In most practical applications the characteristics of the state function and the limit state function as
e.g. its shape are not known a priori. Furthermore the limit state function is often not an analytic
function but derived from a numerical model. It is therefore necessary to investigate the performance of
the adaptive response surface method with respect to the following criteria:

• probability or β level

• number of random variables n

• multiple β-points

• state function (high- or slow-curved, continuously differentiable, noisy)

• limit state function (high- or slow-curved, continuously differentiable, noisy)

3.2 The Quattro Function

Within the first example the different results of the presented adaptive response surface method in
comparison with a classic global response surface method are given. The state function

g(x1, x2) = −
(

x1

6
+

1
2

)4

−
(

x2

8
− 6

5

)4

−
(

2
9
x1 +

1
2

)3(
x2

8
− 6

5

)
+
(

x1

6
+

1
2

)2

+
(

x2

8
− 6

5

)2

−5
3
x1−

3
4
x2+

11
5
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Figure 10: The Quattro Function. Analytical state
function g(x) and limit state function g(x) = 0 in
combination with direct importance adaptive sam-
pling.

Figure 11: The limit state function g(x) = 0 is a
high-curved nonlinear one. The random parame-
ters X1 and X2 are normal distributed variables
with mean X̄1 = −3.9, and X̄2 = 1.5 and standard
deviation σX1 = σX2 = 1.

Figure 12: Approximated state function g(x) and
limit state function g(x) = 0 using the global
2nd order polynomial approximation using a global
central composite design of experiment.

Figure 13: Using the global 2nd order polyno-
mial approximation a wrong most probability fail-
ure domain is identified using importance adaptive
sampling.
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Figure 14: Approximated state function g(x) and
limit state function g(x) = 0 using the adaptive
response surfaces with importance adaptive sam-
pling and the first design of experiment (central
composite design).

Figure 15: Adaptive moving least square approxi-
mation with first and second design of experiment.

Figure 16: Adaptive moving least square approxi-
mation with first till third design of experiment.

Figure 17: Adaptive moving least square approxi-
mation with first till fourth design of experiment.
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Number of state Failure Variance of the Accuracy
function evaluations probability estimation σ2

P̄ (F)
error %

Direct adaptive 4000 4.8907 · 10−6 1.5813 · 10−7 0
importance sampling (AS)
Global polynomial 2nd 9 2.1563 · 10−10 2.5303 · 10−11 2268000
order approximation (RSM)
Adaptive response 9 7.9728 · 10−11 6.0763 · 10−12 6134100
surface approximation 18 4.47 · 10−6 1.1713 · 10−7 9
(ARSM) 27 4.4096 · 10−6 1.214 · 10−7 11

36 4.6044 · 10−6 1.1337 · 10−7 6

Table 5: Results of the failure probability of the Quattro Function depending on the applied analysis
method.

Number of state Failure Variance of the Accuracy
function evaluations probability estimation σ2

P̄ (F)
error %

Direct adaptive 4000 3.6817 · 10−6 3.5149 · 10−7 0
importance sampling (AS)
Adaptive response 25 4.5943 · 10−4 2.6486 · 10−5 99
surface approximation 34 1.05 · 10−4 4.2485 · 10−6 96
(ARSM) 43 3.3566 · 10−6 7.2673 · 10−7 10

52 7.9314 · 10−6 1.0342 · 10−6 54
61 3.7946 · 10−6 3.3768 · 10−7 3

Table 6: Results of the failure probability of the Himmelblau Function depending on the applied analysis
method.

is a two-dimensional fourth order polynomial, as shown in Figure 10. Furthermore, the limit state
function g(x) = 0 is a high-curved nonlinear one, as shown in Figure 11. The random parameters X1

and X2 are normal distributed variables with mean X̄1 = −3.9, and X̄2 = 1.5 and standard deviation
σX1 = σX2 = 1. In order to obtain the reference failure probability a direct importance adaptive sampling
is done with N = 2000 samples, two iterations and an initial variance multiplier σ(i=1) = 3. The given
failure probability is P (F) = 4.8907 ·10−6 with a standard error of σP̄ (F) = 1.5813 ·10−7. In addition, the
same adaptive sampling procedure is used to calculate the failure probability on the response surfaces.

For this example, the approximation using the global 2nd order polynomial approximation and a
global central composite design of experiment leads to an error of 2268000 % in calculation the failure
probability, as shown in the Figures 12 and 13. Using the global 2nd order polynomial approximation a
wrong most probability failure domain is identified using importance adaptive sampling.

Applying the new adaptive response surface method to this state function, as shown in Figures 14 till
17, leads to accurate estimation of the failure probability already after the first adaption with N = 18
state function evaluations. In summary, using three adaptions of the central composite design with in
total N = 36 state function evaluations the error of the given failure probability is 6% only (see Table 5
for details).

3.3 The Himmelblau Function

A commonly used fourth order polynomial test function whithin the nonlinear optimization is the so-called
Himmelblau (1972) function

g(x1, x2) =
(

x2
1

1.81
+

x2

1.81
− 11

)2

+
(

x1

1.81
+

x2
2

1.81
− 7
)2

− 50

with multiple separated unsafe domains. The Figure 18 shows the Himmelblau state function g(x) and
limit state function g(x) = 0. The random parameters X1 and X2 are normal distributed variables
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Figure 18: The Himmelblau Function. Analyti-
cal state function g(x) and limit state function
g(x) = 0 with direct importance adaptive sam-
pling. The random parameters X1 and X2 are nor-
mal distributed variables with mean X̄1 = −0.6,
and X̄2 = 0 and standard deviation σX1 = σX2 =
1.

Figure 19: Approximated state function g(x) and
limit state function g(x) = 0 using the adaptive
response surfaces with importance adaptive sam-
pling and the first design of experiment (full fac-
torial design).

Figure 20: Adaptive moving least square approx-
imation with first and second (central composite)
design of experiment.

Figure 21: Adaptive moving least square approxi-
mation with first till third (central composite) de-
sign of experiment.
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Figure 22: Adaptive moving least square approx-
imation with first till fourth (central composite)
design of experiment.

Figure 23: Adaptive moving least square approxi-
mation with first till fifth (central composite) de-
sign of experiment.

with mean X̄1 = −0.6, and X̄2 = 0 and standard deviation σX1 = σX2 = 1. Using direct importance
adaptive sampling the reference failure probability is P (F) = 3.6817 · 106 with a standard error of
σP̄ (F) = 3.5149 · 10−7. Contingent on the existence of multiple separated unsafe domains other analysis
methods existing in optiSLang like directional sampling (Bjerager (1988); Ditlevsen & Bjerager (1989);
Melchers (1990)) or FORM and ISPUD are not applicable.

Applying adaptive response surface method to this state function, as shown in Figures 19 till 23, leads
to accurate estimation of the failure probability already after the fourth adaption with in total N = 61
state function evaluations. The Figure 19 shows the approximated state function g(x) and limit state
function g(x) = 0 using the first design of experiment (full factorial design with N = 25 state function
evaluations). In summary, using four adaptions of the central composite design with N = 9 state function
evaluations per iteration the error of the given failure probability is 3% only (see Table 6 for details).

3.4 Nonparametric Structural Reliability Analysis

3.4.1 Introduction

A cylindrical shell structure with imperfect geometry is studied. The imperfections are modelled as
random field of the coordinates of the underlying finite element model. A robustness study is performed
before the actual reliability analysis with the purpose of reducing the number of random variables. For
reliablity analysis, Monte Carlo simulation using Latin Hypercube sampling is utilized. The failure
criterion is derived from a comparison of the linear buckling loads of the perfect and the imperfect
structures. The computational finite element solver tasks are performed using the software package SLang
, (Bucher et al. (1995)).

3.4.2 Random Fields

Properties A random field is, in brief, a random function H(x) defined on a spatial structure. The
vector x points to a location on the structure. Random fields are used, e.g., to study random fluctuations
in geometrical or material properties of a mechanical or structural system. In other words, the considered
property is a random variable at each point on the structure. Moreover, the random properties at two
different locations can be mutually correlated among each others.

24th CAD-FEM Users’ Meeting 2006
International Congress on FEM Technology
with 2006 German ANSYS Conference

October 25-27, 2006, Schwabenlandhalle Stuttgart/Fellbach, Germany

20



Any random variable is described by a probability distribution function, which can be parameterized
by distribution type and stochastic moments. For description of a random field, these properties become
functions over space as well. From now on, a Gaussian (or Normal) distribution type is assumed. In this
case, the description by first and second moments provides the full information. In particular

µH(x) = E[H(x)] =

+∞∫
−∞

hfH(x, h) dh (24)

denotes the mean function, and

RHH(x1,x2) = E[H(x1) ·H(x2)] =

+∞∫
−∞

+∞∫
−∞

h1h2fH(x1,x2, h1, h2) dh1 dh2 (25)

the correlation function, with E[.] being the expected value operation (Soong & Grigoriu (1993)). Rx is
the domain of admissible values of x. RHH is a function of the distance between two points and indicates
the amount of linear dependency between the random properties at these locations. It has the properties
of symmetry:

RHH(x1,x2) = RHH(x2,x1) (26)

and positive semi-definiteness: ∫
Rx

∫
Rx

RHH(x1,x2)w(x1)w(x2) dx1 dx2 ≥ 0 (27)

for any real valued function w(.) defined on the structure.
The so-called correlation length LHH , which is actually the centre of gravity of the correlation function,

is a typical characteristic of RHH . It has to be estimated from manufacturing processes, natural scatter
of material properties, etc. An infinite correlation length yields a structure with random properties, yet
without fluctuations within the structure. A zero correlation length yields uncorrelated (in case of the
Gaussian distribution independent) variables. It can be shown that the structural analysis yields the
same results as for LHH = ∞.

Two special cases are important for the further studies. Homogeneity: A random field is said to be
homogeneous in the wide sense, if the first and second moments are the same at any possible location,
i.e.

µH(x) = µH(x + ξξξ) ∀ ξξξ (28)
RHH(x1,x2) = RHH(x1 + ξξξ,x2 + ξξξ) ∀ ξξξ (29)

Isotropy (in the wide sense) claims that the correlation function depends on the distance between the
two observed locations x1, x2 only, not on the direction:

RHH(x,x + ξξξ) = RHH(‖ξξξ‖) (30)

Modelling For computational analyses, a random field has to be discretized in order to yield a finite
set of random variables X, which are assigned to discrete locations on the observed structure. Since the
Finite Element Method is the standard for structural analyses, it is convenient to discretize the random
field in the same way as the finite element model. One speaks of Stochastic Finite Elements in this case.
The discretization can be oriented at the element mid points, integration points, or nodes. The properties
of the random variables are derived from the random field properties explained previously. The spatial
discretization should be able to model the variability of the random field. For this purpose, the distance
between two nodes should be not more than 1/4 of LHH (Der Kiureghian & Ke (1988); Hisada & Nakagiri
(1981)).

The set of random variables is then characterized by a mean vector and a correlation matrix. It is
convenient for the developments that follow to use the covariance matrix instead, which is defined as

CXX : cij = RHH(xi,xj)− µH(xi) · µH(xj) (31)
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The joint density of all random variables can be modelled with help of the Nataf model (Nataf (1962); Liu
& Der Kiureghian (1986)), given the type and properties of the marginal distributions for each variable.

From now on, random fields with zero mean vector are considered. Then the covariance matrix suffices
for the characterization of the random variables set. Random number generators can produce independent
random variables only. For the present case of a Gaussian distribution, independence is equivalent to
uncorrelatedness. It can be shown that the random variables will be uncorrelated after the following
transformation. The covariance matrix is decomposed with help of an eigenvalue analysis:

ΨΨΨT CXXΨΨΨ = diag{λi} (32)

Therein, ΨΨΨ is the matrix of eigenvectors of CXX stored columnwise, and the eigenvalues are identical to
the variances of the uncorrelated random variables Yi: λi = σ2

Yi
. The transformation rule reads

Y = ΨΨΨT X (33)

and the backward transformation

X = ΨΨΨY (34)

because the eigenvectors ΨΨΨ form an orthonormal basis. Hence it is possible to simulate the random field
with a set of uncorrelated random variables Y and the respective (deterministic) shape funtions ΨΨΨ.

The eigenvalues are usually stored sorted by magnitude in descending order, which is a measure
for their relevance in representing CXX . This opens a way of reducing the usually huge number of
variables. Only the random variables with the highest variances are needed for simulation. The quality
of approximation of the random field is expressed by the variability fraction (Brenner (1995))

Q =

n∑
i=1

σ2
Yi

trace
(
CXX

) ; 0 ≤ Q ≤ 1 (35)

The number of considered variables has to be adjusted before the simulation for a sufficient quality, e.g.
Q > 0.9.

Application: Cylindrical Shell The concept of non–parametric relibality analysis shall be demon-
strated by an application example. The structure considered is a cylindrical shell with properties as given
in table 7. The cylinder has a Navier–type suppport at the bottom edge and is loaded along the top edge
with a continuous vertical unit load. The structure is modelled with a 9-node isoparametric shell finite
element type (SHELL9N) within the program SLang (Bucher et al. (1995)). Figure 24 shows the finite
element model with loads and restraints. The load, however, is applied as an equivalent prestrain of the
elements, because of the difficult modelling and computing of in–plane loads for this element type.

A random field is applied on the structure in order to model geometrical imperfections. The random
properties are coordinate deviations from the perfect structure in the cylinder’s radial direction. Thus
the random field is discretized at the nodes of the finite element mesh. It has zero mean and a standard
deviation of σH = 10−3 mm, which is roughly a hundredth of the radius. The orthogonal field has different
correlation functions along the perimeter and height as plotted in fig. 25. The spatial correlation structure
with respect to one node on the bottom edge is visualized, too. While fig. 31 shows a few eigenvectors of
the covariance matrix, a sampled imperfection shape can be seen in fig. 26, both are scaled.

Table 7: Properties of cylindrical shell structure.

Wall thickn. Radius Height Young’s mod.
[mm] [mm] [mm] [N/mm2]
0.197 101.6 139.7 6.895 · 104
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Figure 24: Finite element model of the cylindrical shell with schematic loads and supports.
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Figure 25: Correlation functions over perimeter (above) and height (below) and spatial correlation struc-
ture with respect to the marked node.
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Figure 26: Sample of an imperfection shape (magnified).

The reliability towards stability failure is studied. The limit load is adopted from the buckling load
of the perfect structure subtracted a “safety margin”. The limit state function reads

g(X) = Fbuckling − 34 kN ≤ 0 (36)

Robustness Analysis The number of random variables used to model a random field can be very high,
such that numerical difficulties may occur, particularly when the probability of failure is low. Experience
with other applications of reliability analysis with geometrical imperfection (Schorling (1998)) shows,
that the reduction of variables explained in section 3.4.2, eq. (35) fails, because the criterion is purely
stochastic and does not account for the structural behaviour. On the other hand, purely mechanical
considerations may not work as well, if they fail to represent the random field properly.

The program optiSLang (dynardo GmbH (2006)) offers the feature of robustness analysis. This
is used to find a suitable selection of variables. In brief, the robustness analysis examines statistical
dependencies between any input and output quantities the user desires. The data is obtained from a
Monte Carlo simulation with small sample size. The input variables are simulated following statistical
properties put in by the user, or they are varied systematically within given bounds. optiSLang offers
functions such as filters, fit tests or a principal component analysis of the correlation matrix, which shall
reveal the most relevant influences on the observed output quantities. Results are plotted as coloured
matrices, histograms etc. which make it easy to identify dependencies between variables. Two functions
are explained in more detail in the following.

By computing the quadratic correlation it is tested, if one variabe Y can be represented by a quadratic
regression of another variable, X. The regression model is

Ŷ (X) = a + bX + cX2 (37)

Samples of Ŷ are gained by inserting samples of X into eq. (37), values of Y itself are computed directly.
Then the correlation coefficients ρY bY and ρbY Y 6= ρY bY are evaluated. The values range from 0 to 1, high
values indicate a strong quadratic correlation between X and Y .
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The coefficient of determination is the ratio of the variance of a regression model to the original
variable. It indicates the amount of variability of an output variable Y , which can be explained by the
variability of the input variable X underlying the regression model. For the quadratic regression of eq.
(37):

R2 =

n∑
i=1

(
Ŷi(Xi)− µY

)2
n∑

i=1

(
Yi − µY

)2 (38)

Values of R2 vary from 0 to 1. A high value, e.g. R2 = 0.8, means that 80 % of the variability of Y
can be explained by a quadratic relation between Y and X. However, this is no accuracy measure of the
regression model. While the (quadratic) correlation coefficients only give information about the mutual
relation of two variables, the coefficients of determination allow for a comparison of the influences of all
input variables to the output.

Results A robustness analysis is performed with optiSLang , where all 396 variables of the random field
are considered and their relations to the critical buckling loads of the simulated imperfect structures are
examined. Other output quantities were computed as well, such as characteristics of the simulated
imperfection shape or the buckling vector, stresses etc. The purpose of these examinations was to
find criteria for reducing the number of random variables or savings of FE calculations for irrelevant
imperfections. Only the observations between the random variables as input and the critical buckling
load as output are discussed in the following.

No significant linear correlations could be found. Instead, strong quadratic correlations are observed
between the first 14 random variables (where “first” indicates those variables with the highest variances,
i.e. highest eigenvalues after decomposition of the covariance matrix, cf. sect. 3.4.2) and the critical
load. For variables of order higher than 14, the quadratic correlation coefficients are close to zero. The
quadratic correlation matrix as explained in section 3.4.2 is displayed in fig. 27. The nonlinear dependency
becomes obvious by an anthill plot, that is a plot of realizations of input and output variable pairs, see
fig. 28 for an example. Fig. 29 shows a histogram of the sampled critical load and a probability density
of Weibull type, which was the type of highest acceptance in the fit test. Since all input variables are of
Gaussian type but the output is not, this is another evidence for the non–linear relation.

Based on the quadratic regression of eq. (37) for the buckling load, with each random variable set
in for X successively, the coefficients of determination, eq. (38), are computed. The sum of all values is
less than 100 %. That means, the variance of the critical load cannot be fully explained by a quadratic
relation to the input variables. The results are sorted and plotted as bar diagram, fig. 30. The strongest
influences can easily be identified. A closer look reveals that not all of the “first 14” variables (see above)
are most relevant, but a few variables assigned to higher order eigenvectors of the covariance matrix
as well. The eigenvectors of the covariance matrix (used as shape functions for the simulated random
amplitudes in the reliblity analysis) which are selected by the criteria of either the highest variances
(“first 14”) or the highest coefficients of determination (“top 14”) are gathered in fig. 31. The selection
by the latter criterion are the eigenvalues/eigenvectors of order 1, 2, 5, 6, 15, 21, 22, 26, 29, 30, 32, 34,
83, 197.
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OUTPUT: critLoad vs. OUTPUT: critLoad, r = 1.000
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INPUT: rv1 vs. OUTPUT: critLoad, r = 0.438
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Figure 27: Matrix of quadratic correlation coefficients. Above: full matrix; below: detail. The lowest
row shows correlations of the critical load with the first 20 random variables.
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INPUT: rv1 vs. OUTPUT: critLoad, (quadratic) r = 0.438
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Figure 28: Anthill (or scatter) plot of critical load vs. first random variable.
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Figure 29: Histogram of the sampled critical load and fitted Weibull distrubution.
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Figure 30: Coefficients of determination of critical load by random variables, for quadratic model. Right:
detail.
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Figure 31: Selected eigenvectors of the covariance matrix.
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Figure 31 – continued: Selected eigenvectors of the covariance matrix.
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Reliablity Analysis The reliability of the structure is studied by means of a Monte Carlo simulation ,
with the limit state function as defined by eq. (36). Three variants are computed: as a reference, the full
representation of the random field, which employs 396 random variables, is used. Second, the “first 14”
variables were selected by the criterion described on page 22 and third, a set of random variables with
the “top 14” coefficients of determination, cf. sect. 3.4.2. In each case, a sample with 36000 realizations
is generated by Latin Hypercube Sampling. No other variance reduction scheme such as Importance
Sampling is applied. Because the random field defines the structural geometry and hence structural
behaviour, the limit state function cannot be programmed explicitely, but a linear buckling analysis is
carried out for each sample.

The failure probabilities computed with the different sets of variables are listed in table 8. Since
Monte Carlo is a statistical method, the so–called statistical error is listed as well. This is the standard
deviation of the estimator of the failure probability, which gives information about the confidence of the
result. The simulation results with all variables and the “top 14” selection show a good quality. With
the “first 14” set of variables, the probability of failure is underestimated by more than a magnitude.
This set of random variables is able to represent the random field in good quality, but is not able to
model the structural behaviour. The result obtained with the “top 14” selection is close to the reference,
although it tends to be lower, too. Obviously, this selection criterion provides a good compromise for
both modelling the stochastic and the mechanical problem.

Table 8: Probabilities of failure for different sets of random variables.

No. of random variables 396 14 14
Selection criterion none highest σ2

Xi
highest R2

(all) (“first 14”) (“top 14”)

Prob. of failure Pf 9.7 · 10−3 2.8 · 10−4 3.6 · 10−3

Statistical error σPf
5.2 · 10−4 8.8 · 10−5 3.2 · 10−4

cov(Pf ) 5 % 32 % 9 %

4 Concluding Remarks

In this paper different methods for the calculation of failure probabilities are investigated with respect
to several parameters as the number of random variables, the probability level, the ability to deal with
multiple design points, curvature and the shape of the limit state function and the existence of noise in
the response function.

The most robust methods are Monte Carlo simulation and latin hypercube simulation. The main
drawback of these methods is, that the variance of the estimator of the probability is quadratically
dependent on the probability level, and as a result for low probabilities a large number of samples is
required.

A linearization of the limit state function at the design point with FORM (First Order Reliability
Method) gives sometimes accurate results and at least an idea about the expected failure probability
and for linear problems the exact probability is obtained. FORM requires the least number of samples
compared to direct simulation methods, but it is not able to deal with multiple design points and the
determination of the design point has to be possible. For certain problems with a noisy response the
gradient-based optimizer has failed, and for highly curved limit state function the linear assumption is
not reasonable.
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Figure 32: Performance of methods for stochastic analysis. a.) Plain Monte Carlo Simulation (PMC),
b) Latin Hypercube Sampling, c.) First Order Reliability Method (FORM) & Importance Sampling
using Design Point (ISPUD) (∗1only applicable within continuously differentiable response functions), d.)
Response Surface Method (RSM), e) Adaptive Response Surface (ARSM) in combination with Adaptive
Sampling (AS).

An alternative is the use of importance sampling techniques. The first investigated method is the
adaptive sampling approach, where after a first latin hypercube simulation, possibly with adapted vari-
ance, the sampling density is determined from the samples of the previous iteration step within the failure
domain. The method gives accurate results, if the number of samples within the failure domain was suf-
ficient to accurately determine the correlation, but this number was relatively large, especially in higher
dimensions. A second importance sampling technique is ISPUD (Importance Sampling Using Design
Point). The sampling is centered near the design point, which is determined in a previous optimization
step. T The method is a good choice for problems, where the design point can be accurately determined
by an optimization (gradient-based optimizer NLPQL).

Methods based on global response surfaces have been tested. It has been observed, that for a small
number of random variables (n < 5) the global response surface methods are accurate, even for small
failure probabilities P (F) ≥ 10−2. The number of required samples is exponentially increasing with the
number of samples, and in higher dimensions (n > 10) the response surfaces are not applicable any more.

Finally, a new adaptive response surface method is introduced to analyse the design reliability with
high accuracy and efficiency. Whereby the surrogate model is based on an improved moving least square
approximation combined with an adaptive design of experiment. In order to obtain a fast simulation pro-
cedure on the response surface an adaptive importance sampling concept is developed. In this sense, the
proposed method is very robust and efficient for n ≤ 20 random parameters and combine the advantages
of an adaptive design of experiment, adaptive sampling and efficient response surface methods.
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As a conclusion the following proposal for the method of choice and its limitations for a specific
problem can be given (see Figure 32):

• Monte Carlo simulation

– P (F) ≥ 10−1, n independent

• Latin hyper cube sampling

– P (F) ≥ 10−2, n independent

• First and second order reliability method

– n ≤ 50

– Continuously differentiable response function

– Large failure in order high-curved limit state functions

• Importance sampling using design point

– n ≤ 50

– Continuously differentiable structural response function

– Noisy limit state functions (crash)

• Adaptive importance sampling

– P (F) ≤ 10−2, n ≤ 5

– P (F) > 10−2, n ≤ 10

– Noisy limit state functions (crash)

– Non-differentiable structural response function

• Response surface method

– P (F) ≥ 10−2, n ≤ 5

• Adaptive response surface method

– n ≤ 20

In this study, a procedure for calculating the reliability of mechanical systems with random imperfec-
tions was developed and tested. Such a complex problem still needs preliminary studies, but is already
applicable to realistic problems. Within such preparations, attention must be paid on the analysis of
the mechanical problem and choice of the calculation method. A compromise between accuracy and
computing time should be found.

The reliability was computed by the Monte Carlo method, with the imperfections modelled as random
fields. This may require a huge number of random variables, which in turn may cause numerical difficulties
in the computation of the probability of failure. Hence another important task in the preparation phase
is a suitable selection of the random variables applied. It is suggested to perform a robustness analysis
for this purpose, which requires relatively few additional samples compared to the sample size needed
for the reliability analysis itself. The robustness analysis comprises, among other functions, a quadratic
regression of the state function by the input random variables. It turned out that for the underlying
geometrically non–linear problem, this approach helps to detect the important input variables.

The approach suggested here is called non–parametric, because it depends on stochastic properties
defined continuously on the entire structure, but not on geometry parameters. Quite often the randomness
of the geometry is introduced by few random structural parameters, such as radius, material thickness
etc. These values can be generated by CAD programs. In fact, only variants of the perfect structure are
generated that way. It is impossible to consider the random fluctuations over space, which result e.g.
from manufacturung tolerances. The presented approach is more effective for this class of problems.
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The efficiency of the reliability analysis still can be improved, e.g. by application of Adaptive Response
Surface methodology or variance reducing Monte Carlo techniques.

References

Bjerager, P. (1988). Probability integration by directional simulation. Journal of Engineering Mechanics,
ASCE , Vol. 114, 1285 – 1302.

Bourgund, U. & Bucher, C.G. (1986). Importance sampling procedure using design points (ispud) - a
user’s manual. In Bericht Nr. 8-86 , Institut für Mechanik, Universität Innsbruck, Innsbruck.

Box, G.E.P. & Draper, N.R. (1987). Empirical Model Building and Response Surfaces. John Wiley and
Sons, New York,USA.

Box, M.J. & Draper, N.R. (1971). Factorial designs, the |xtx| criterion, and some related matters. Tech-
nometrics, Vol. 13, 731 – 742.

Breitung, K.W. (1991). Probability approximations by log likelihood maximization. Journal of Engineer-
ing Mechanics, ASCE , Vol. 117, 457 – 477.
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