•

.

New Reliability Methodologies for Driving Scenarios

Roland Niemeier, Thomas Most, Veit Bayer - Dynardo GmbH Paul Tobe Ubben, Maximilian Rasch - Daimler AG

6th European Expert Workshop on Reliability of Electronics and Smart Systems 2018 EuWoRel; Berlin Oct. 1st - Oct. 2nd 0

How many miles ...

Table 1. Examples of Miles and Years Needed to Demonstrate Autonomous Vehicle Reliability

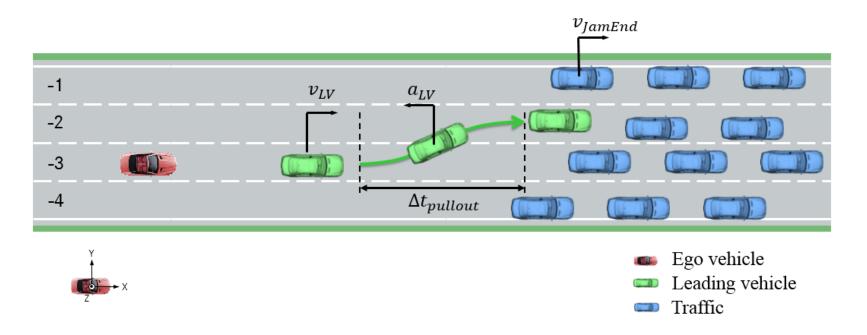
		Benchmark Failure Rate			
5	How many miles (yearsª) would autonomous vehicles have to be driven	(A) 1.09 fatalities per 100 million miles?	(B) 77 reported injuries per 100 million miles?	(C) 190 reported crashes per 100 million miles?	
Question	(1) without failure to demonstrate with 95% confidence that their failure rate is at most	275 million miles (12.5 years)	3.9 million miles (2 months)	1.6 million miles (1 month)	
Statistical	(2) to demonstrate with 95% confidence their failure rate to within 20% of the true rate of	8.8 billion miles (400 years)	125 million miles (5.7 years)	51 million miles (2.3 years)	
	(3) to demonstrate with 95% confidence and 80% power that their failure rate is 20% better than the human driver failure rate of	11 billion miles (500 years)	161 million miles (7.3 years)	65 million miles (3 years)	

^a We assess the time it would take to compete the requisite miles with a fleet of 100 autonomous vehicles (larger than any known existing fleet) driving 24 hours a day, 365 days a year, at an average speed of 25 miles per hour.

Source: Nidhi Kalra, Susan M. Paddock: Driving to Safety, www.rand.org

There is a crucial Need for Smart Reliability Methods for Driving Scenarios

A typical driving scenario: approaching a jam tail with a lane change of the vehicle in front of the driver



Robust Design Optimization

Optimization

Sensitivity Analysis

Single- & Multi-Objective (Pareto) Optimization

Robust Design

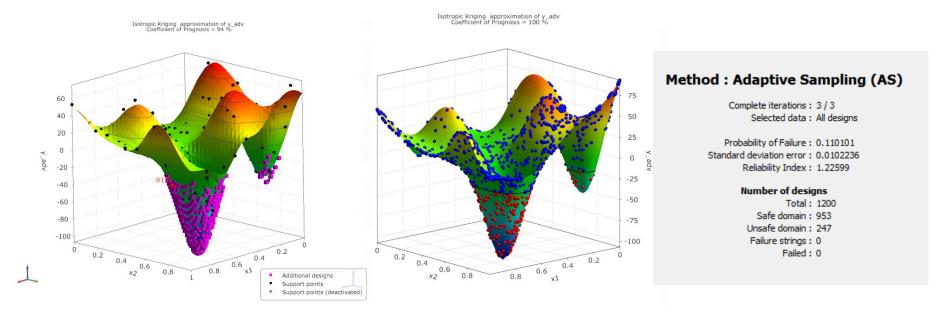
Variance-Based Robustness Evaluation

Probability-Based Reliability Analysis

CAE process (FEM, CFD, MBD, Excel, Matlab, etc.)

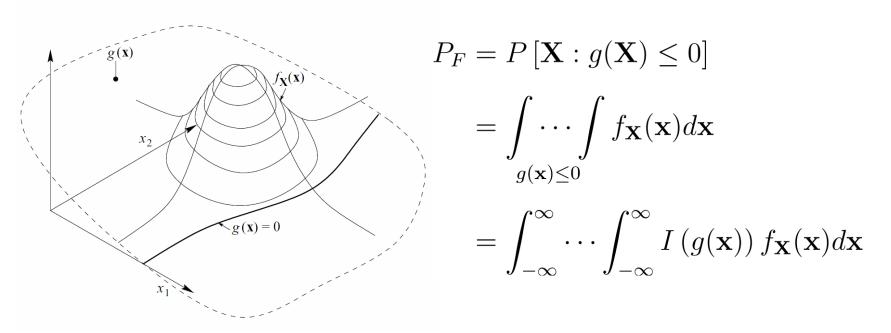
Mishra's Bird Function

Test function used for events in advanced driver assistance systems



Comparison of Monte Carlo based Failure Probability calculation with Adaptive Sampling method helped to reduce simulations runs from about 500.000 to 3.000

Failure Probability



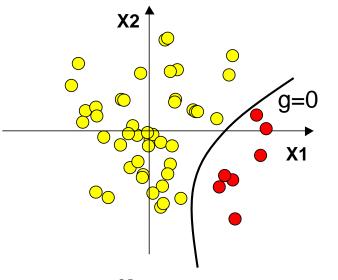
- The probability of failure is the integral of the joint probability density function over the failure domain
- By introducing an indicator function

 $I(g(\mathbf{x})) = 1$ if $(g(\mathbf{x})) < 0$, $I(g(\mathbf{x})) = 0$ else

this can be computed as the expected value of I

dynando

Monte Carlo Simulation



Sigma level	P _F	$N ext{ for } \operatorname{cov}(P_F) = 10\%$
2	2.3E-2	4 400
3	1.3E-3	74 000
4.5	3.4E-6	29 500 000

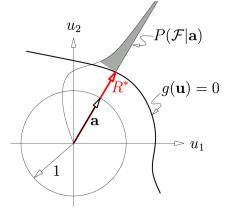
$$\hat{P}_F = \frac{1}{N} \sum_{i=1}^N I\left(g(\mathbf{x}_i)\right) \qquad \hat{\sigma}_{P_F} = \sqrt{\frac{\hat{P}_F}{N}}$$

- Robust for arbitrary limit state functions
- Confidence of the estimate is very low for small failure probabilities
- ➢ Sigma level ≤ 2
- Independent of number of random variables

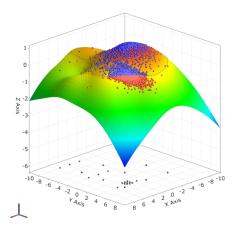
dynando

Some advanced methods for reliability analysis

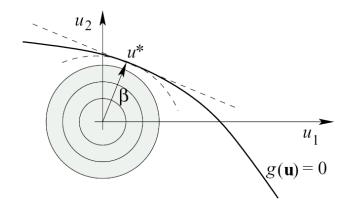
Directional Sampling



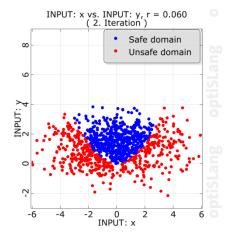
Adaptive RSM



First Order Reliability Method



Adaptive Importance Sampling



Define Limit State in optiSLang

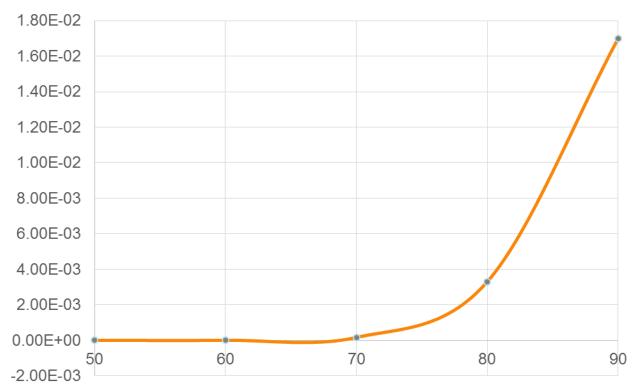
Paramete	arameter			Responses				
Name	e Value			Name		Value		
D	0.02			x_max	0.623417	0.623417		
Ekin	10			omega_dam	bed 4.47124	d 4.47124		
•	ositive", i.e. r al criteria are		•		eries sys	tem		
	Name	Туре	Expression	Criterion	Limit	Evaluated expression		
🔺 lim_	_st_omega_damped	Limit state	omega_damped	≤	8.5	4.47124 ≤ 8.5		
new								
Create	e new (x) Variable	\ ↓	Objective	Con	Istraint	Limit state		
	criteria from slot			Π.	nstant visualizat	ion Import criteria from syster		

Robustness & Reliability – Decision Tree

• optiSLang automatically suggests a robustness approach depending on the parameter properties, the defined criteria and user specified settings

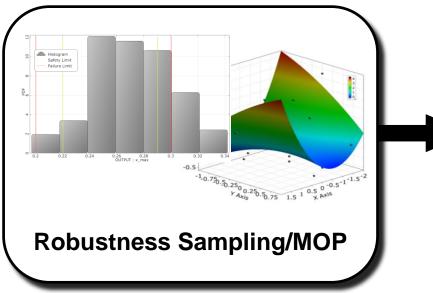
Analysis status: Constraints violations: Failed designs: Solver noise:	Not set	• • •	Robustness / Reliability method Varianced based © © Robustness Probability based © © Adaptive Sampling (AS)		
Sigma level:	2ơ 3ơ 4,5ơ	6ơ	 ARSM - Directional Sampling 		
Complexity evaluation			O Directional Sampling (DS)		
Number of designs:	1	* *	G FORM		
Maximum in parallel:	1	×	O ISPUD		
Runtime per design:	infinite	-	Monte Carlo Simulation (MCS)		
Maximum runtime:	infinite	×			
Show additional settings			Starting Point(s) Don't using starting points Use start-design-table 		

Probability of Failures and Fragility Curves

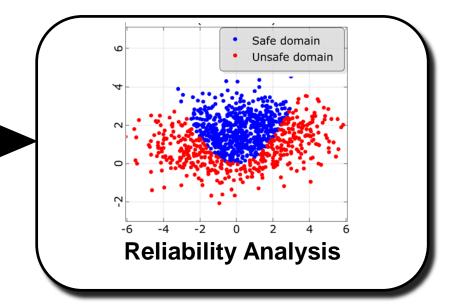


Pf (v)

Recommended Workflow



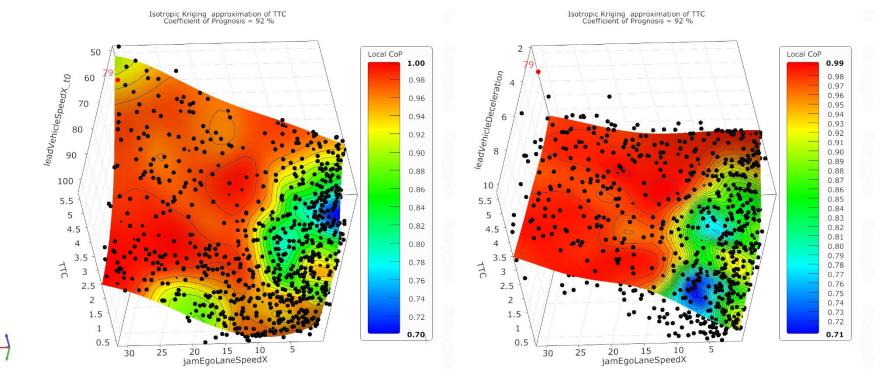
- Check variation of inputs & responses
- Check plausibility in MOP to proof simulation model
- Eventually reduce parameter number
- 200 500 samples
- Check different safety limits
- Stop if failure probability is larger as 10%



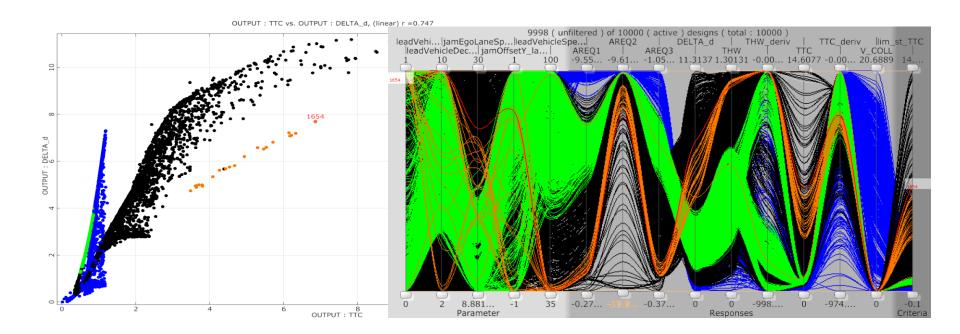
- Perform reliability analysis (e.g. Adaptive Sampling) until defined standard error (e.g. 10%) is reached
- 2000 5000 samples
- In case of fulfilled safety requirement: proof the result with different approach (e.g. Directional Sampling)

Analysis based on MOP (Metamodel of Optimal Prognosis)

- Partially low local CoPs (CoP Coefficient of Prognosis)
- Assumption special physical and control mechanisms in these regions



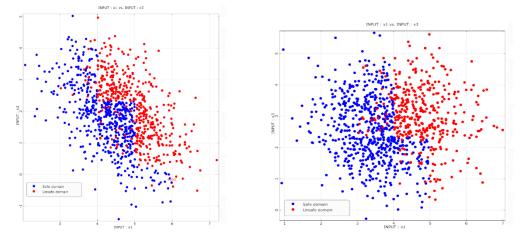
Analysis with Anthill and Parallel Coordinates Plots



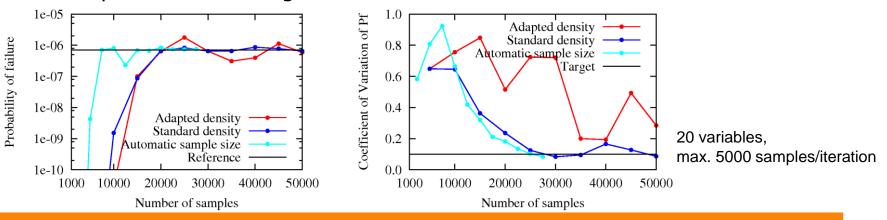
- Some output parameters are used for the steering and therefore have impact on other output parameters
- Analysis provided excellent indication which parameters are used for steering

Enhanced Adaptive Sampling

• Adaptation of mean values only, unity covariance matrix in Normal space



• Given a budget (no. of samples), the sample size per iteration is adapted to reach target standard error of results



Algorithm now integrated in new optiSLang release

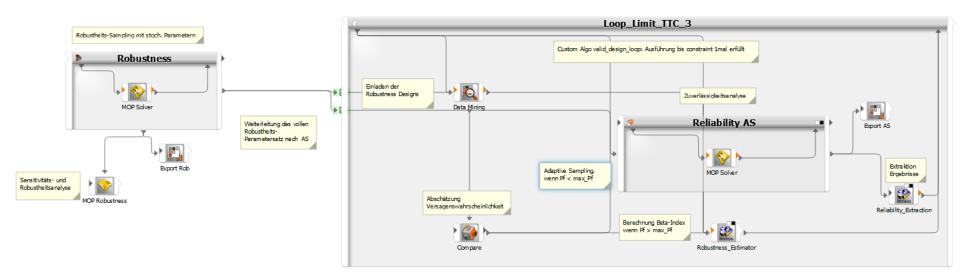
Comparision using the Enhanced Adaptive Sampling

• A factor of 1000 proved to be realistic for the reduction of the necessary simulation runs if using the enhanced adaptive sampling !

TTC = 1.0	Samples	Pf	CoV	Beta
MCS	30.000	1.61*10 ⁻²	4.5%	2.14
AS Standard	20.000	1.55*10 ⁻²	3.2%	2.16
AS Enhanced	8.000	1.30*10 ⁻²	5.8%	2.22
TTC = 0.5	Samples	Pf	CoV	Beta
MCS	14.010.000	2.86*10 ⁻⁵	5.0%	4.02
AS Standard	20.000	2.55*10 ⁻⁵	5.1%	4.05
AS Enhanced	16.000	2.85*10 ⁻⁵	8.4%	4.05
TTC = 0.4	Samples	Pf	CoV	Beta
MCS	39.420.000	2.54*10 ⁻⁶	10.0%	4.56
AS Standard	20.000	3.68*10 ⁻⁶	23.0%	4.48
AS Enhanced	16.000	2.81*10 ⁻⁶	9.1%	4.54

Automated Process

- Loop over threshold values (fragility curve) by custom algorithm
- Robustness sampling (before the loop)
- Estimate failure probability from robustness sample
- Start reliability analysis only for small probability
- Loop until minimal (target) probability is reached



 Note: MOP on robustness samples should not be used here for parameter reduction

dynando

Thank you for your attention!