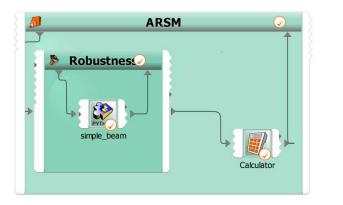
dynardo

0

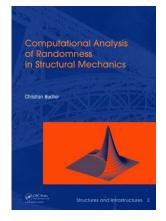
....

Solder Joint Reliability, Uncertainty Quantification and Probability of Failures of eWLB Radar Packages

Roland Niemeier, Bernd Büttner - Dynardo GmbH

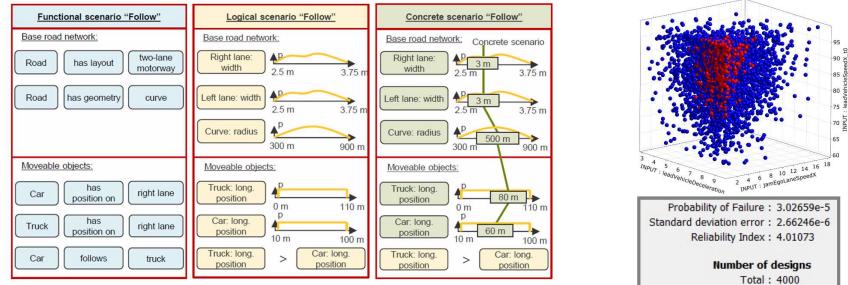

Martin Niessner - Infineon Technologies AG

7th European Expert Workshop on Reliability of Electronics and Smart Systems 2019 EuWoRel; Berlin Sep. 30th - Oct. 1st


dynando

Reliability and the Probability of Failure

- Optimization is introduced into virtual prototyping for more than 20 years
- Robustness evaluation and reliability analysis are key methodologies for safe, reliable and robust products
- The combination leads to robust design optimization (RDO) strategies



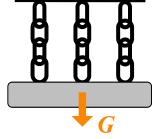
- The complementary of reliability is the probability of failure. This can be computed taking into account the scattering, variations of the input.
- Applications for example in ADAS, Microelectronics, ...:
 - Driving Scenarios
 - Solder Joint Fatique

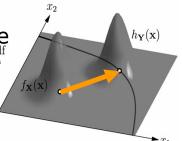
Key findings presented at EuWoRel 2018 New Reliability Methodologies for Driving Scenarios

Source left picture: http://www.pegasusprojekt.de

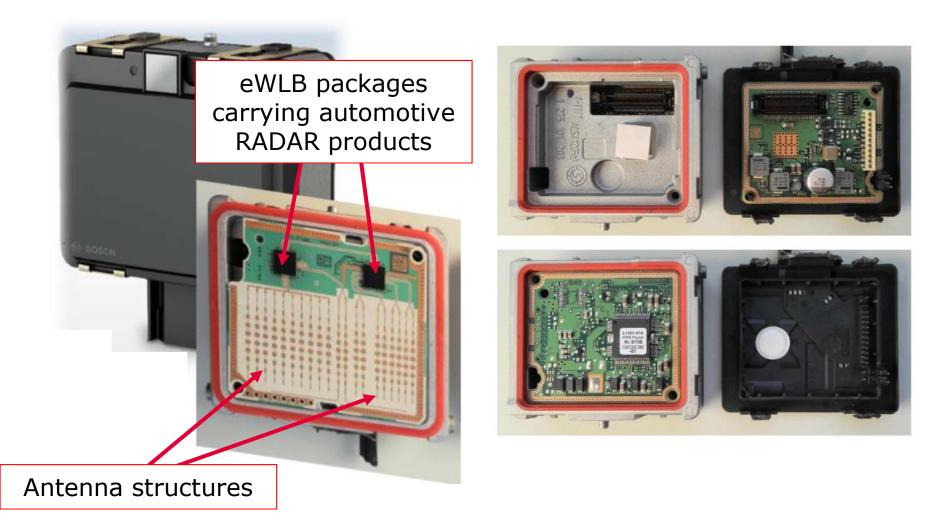
 $P(\operatorname{crash}/\operatorname{km}) = P(\operatorname{crash}|\operatorname{scenario}_1)P(\operatorname{scenario}_1/\operatorname{km}) + \dots + P(\operatorname{crash}|\operatorname{scenario}_{rest})P(\operatorname{scenario}_{rest}/\operatorname{km})$

- Improved understanding of scenarios by sensitivity analysis (i.e. possible analysis of control mechanisms, selection of important parameters)
- With advanced reliability methods the calculations of small probabilities of failures becomes feasible
- Appropriate scenario based automated workflows

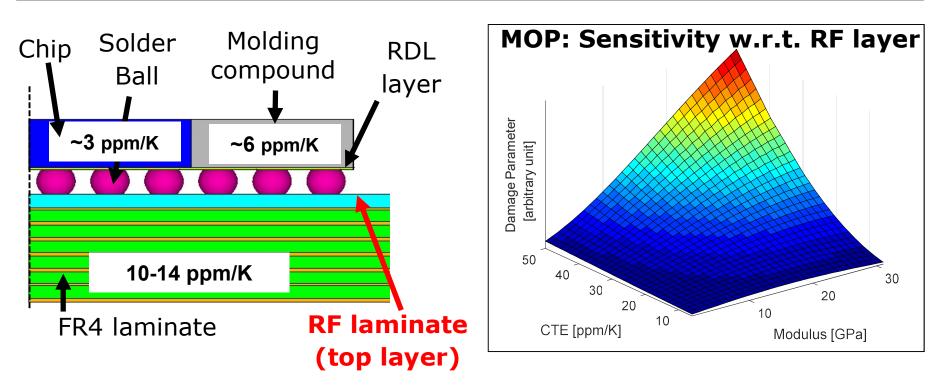

Source right picture: Rasch, M. et al: Safety Assessment and Uncertainty Quantification of Automated Driver Assistance Systems; NAFEMS World Congress, Quebec, 17-20 June 2019


Probability of Failure Calculations in Microelectronics

- The complementary of Reliability is the Probability of Failure
- This can be computed for different failure mechanism, like
 - Solder Joint Fatique (e.g. solder balls)
 - Delamination
 - Interconnect failure (e.g. wire lift-off inside package)
- Total Probability of Failure of the system depends on redundancy, dependencies for example
 - Series system: fails if one single component fails


- Parallel system: fails if all components fail
- Criteria need to be defined for the failure
 - This leads to limit state function(s)
 - Algorithms to detect this limit state function reduce the number of necessary simulation significantly

Investigated application Automotive RADAR



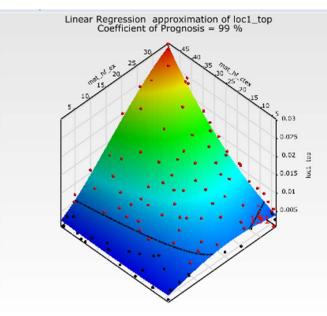
Source: M. Eichhorst et al., VII. SGW-Forum, 2019

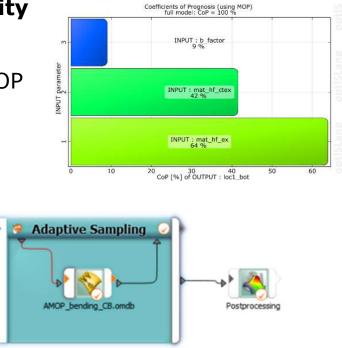
Key findings EuWoRel 2018 Solder joint reliability of eWLB radar package

- > Summary of sensitivity study:
 - For low CTE, the RF laminate generates a "CTE transition" between the PCB and the package
 - For low E modulus, the RF laminate becomes a "buffer layer"
- Findings from sensitivity study were experimentally verified

Next steps in EuWoRel 2019 Investigation using MOP along value chain

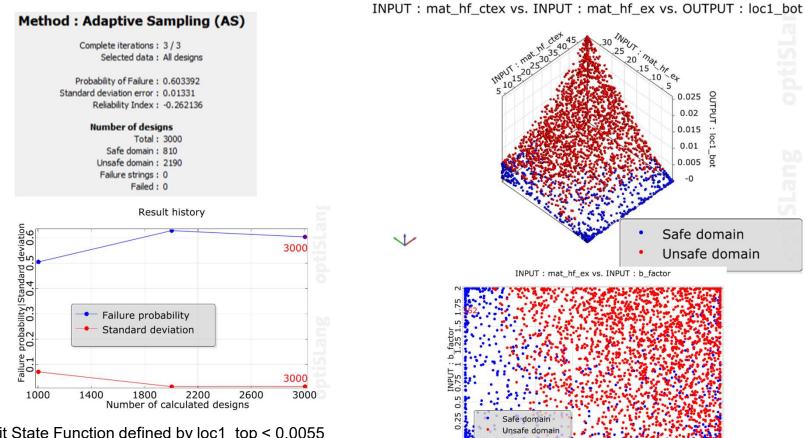
Corner bond


Case	#1	#2	#3
Situation	Tier1 type reliability test	Tier2 type module loading	Tier2 type module loading + improvement
Cyclic loading condition	Temperature	Temperature + bending	Temperature + bending
View of deformation during loading			
loading	100x over-scaled	100x over-scaled	100x over-scaled
Top view (half model)			


 MOPs are used for studying the solder joint reliability along the value chain, especially regarding the RF material design space

Metamodel of Optimal Prognosis (MOP)

- Selection of the **important variables** by sensitivity indices
- Determination of **best surrogate model** without overfitting
- Objective measure of prognosis quality
- Fast Optimization based on MOP
- Fast **Reliability Analysis** based on MOP

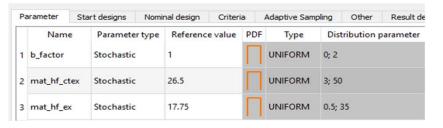


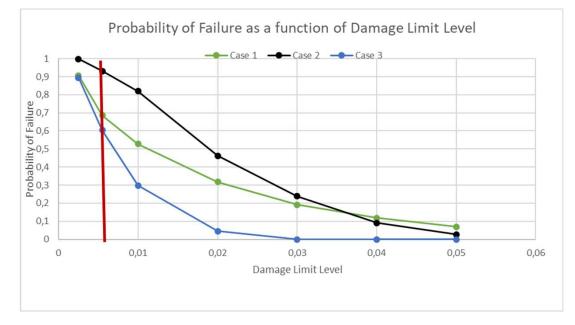
MOP Surface: Case 3 with b_factor = 1.5; isoline loc1_top = 0.0055

dynardo

Probability of Failure at a constant damage limit level using uniform distribution across full design space

10


15 20 INPUT : mat hf ex


Limit State Function defined by loc1_top < 0.0055 Reliability Algorithm: Adaptive Sampling

Probability of Failure for whole design space with uniform distribution Case 1: 0,69; Case 2: 0,95; Case 3: 0,60 for Case 3 displayed: Reliability Information, Cloud plot, Result History and Anthill Plot

Probability of Failure as a function of damage limit level using uniform distribution across full design space

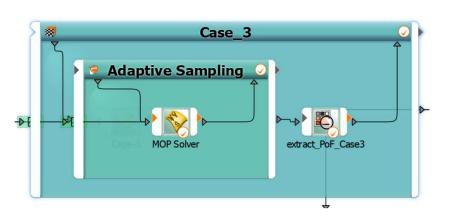
Adaptive Sampling

Higher damages are much more probable in Case 2 than in Case 3

Monitoring

Automated Workflows for Reliability Analyses

- Using Reliability Methods Integrated in Workflows
- Loop over threshold values to calculate Probability of Failure curves


Case 3

Case 2

Case 1

Data Mining

- Branches for different cases
- Data Mining to extract relevant information
- Customized Visualization

😹 Case_3 - Sensitivity

Par	rameter	Start designs	Criteria	Dyna	amic sampling	Othe	er Res	ult designs						
		Name	Parameter	type	Reference val	lue	Constant	Value type	Resolution	Range	Range plot	PDF	Туре	Distribution pa
1	criteria_li	mit_state	Optimizatio	n	0.003	[REAL	Discrete by value	0.00	1111			
2 1	b_factor		Stochastic		1	[REAL	Continuous				UNIFORM	0; 2

Specific Design Point with a Probability Distribution - Walking on the unsafe side, Case 2

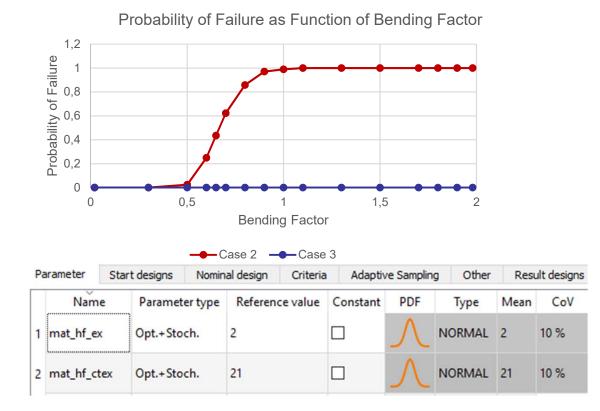
Pa	arameter Sta	art designs Nomin	al design Criteria	a Adaptiv	e Sampling	Other Re	esult desig	Ins						
1	Name b_factor	Parameter type Optimization	Reference value 1.5	Constant	Value type REAL	Resolution Continuous		Range plot	PDF	Туре	Mean	Std. Dev.	CoV	Distribution pa
2	mat_hf_ctex	Opt.+Stoch.	21		REAL	Continuous	3 50		Λ	NORMAL	21	6.3	30 %	21; 6.3
3	mat_hf_ex	Opt.+Stoch.	2		REAL	Continuous	0.5 35		Λ	NORMAL	2	0.6	30 %	2; 0.6
		Way	40 1404 r. 35 30 25 04 44 25 04 04							Selected	ilure : 0.9	20722		
			40							Probability of Fa dard deviation e Reliability I Number o Safe dor Unsafe dor Failure str	ilure : 0.9 nror : 0.0 ndex : -1. f designs fotal : 300 nain : 149 nain : 249	920722 90766578 40994 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		
/			0.016 1901 - LIALIO 0.012 0.000	Safe domain Unsafe domain	optiStang	Criteria				Probability of Fa dard deviation e Reliability I Number o Safe dor Unsafe dor Failure str	ilure : 0.9 nror : 0.0 ndex : -1. designs Total : 300 nain : 149 nain : 249 ings : 0	920722 90766578 40994 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		Evaluated expressi

Assuming the b_factor of 1.5 in Case 2 we have a design on the unsafe side

Method : Adaptive Sampling (AS)

Same Design Point with same Probability Distribution - Walking on the safe side, Case 3

Parameter	Start desig	ns <mark>Nominal</mark>	design Criteria	Adaptive S	Sampling	Other Res	ult des	signs							
Nam	ie P	arameter type	Reference value	Constant	Value type	Resolution	R	ange	Range plot	PDF	Туре	Mean	Std. Dev.	CoV	Distribution parameter
1 b_factor	O	otimization	1.5	\checkmark	REAL	Continuous	0	2							
2 mat_hf_cte	ex O	ot.+Stoch.	21		REAL	Continuous	3	50		\wedge	NORMAL	21	6.3	30 %	21; 6.3
3 mat_hf_ex	0	ot.+Stoch.	2		REAL	Continuous	0.5	35		A	NORMAL	2	0.6	30 %	2; 0.6


INPUT : mat_hf_ctex vs. INPUT : mat_hf_ex vs. OUTPUT : loc1_top

Algorithm using MOP detects with only 3000 runs very low probability of failure: $1.7 * 10^{-12}$

Examples of Fragility Curves:

Studying the Probability of Failure in dependance of important parameters for a specific design

Specific design with mean E, CTE const.; Gaussian distribution; CoV 10%; bending factor varying from 0 to 2; limit level loc1_top = 0.0055

Summary and Outlook

- Superior reliability using additional corner bonds is shown by the reliability analysis
- The probability of failure has been used in calculations as the complementary of reliability
- This analysis has been done based on MOP as an example for a possible important exchange mechanism between companies
- Efficient workflows are developed using the MOP that can be used for simulation runs to calculate probability of failures based directly from simulation runs (i.e. detailed analysis for transition regions, verification)
- Fragility Curves are useful to understand the design behavior

Future possible research include extension of Fragility Curves to several dimensions: Metamodels of Probabilities of Failures High quality Metamodels of Probabilities of Failures can be an essential component for Digital Twins

Thank you for your attention!