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Summary The most general method to solve stochastic problems in structural mechanics is the well
established Monte Carlo simulation method. However, the major shortcoming of this approach is its vast
need of computational resources (the number of finite elements runs required) which cannot be provided
in general situations.

Thus approximations become important which can be based e.g. on the response surface method.
Unfortunately, the global approximation schemes widely used in the application of the response surface
method can be quite misleading due to the lack of information in certain regions of the random variable
space. It is therefore required to avoid such undesirable interpolation errors at reasonable computational
effort. The polynomial approximations are not quite flexible. They always need a predefined number of
limit state check points in unimportant directions in order to avoid any approximation problems. On
this account the maximum number of limit state check points is limited, too.

In this study some new local-global interpolation strategies for the response surface method are
proposed. The so-called polyhedral and weighted radii interpolations of the failure surface are intended to
provide reasonably accurate estimates of failure probabilities while maintaining computational efficiency.
In particular, these response surfaces can be adaptively refined to consistently increase the accuracy
of the estimated failure probability. This is achieved by a combination of random search strategies
(based on the adaptive sampling and directional sampling approach) as well as deterministic search
refinement together with local and global interpolation schemes. The advantage of these methods is the
flexibility for the approximation of highly nonlinear limit state functions. This is especially suitable for
the reliability analysis of complex nonlinear structures. An arbitrary number of check points even in high
local concentration can be used without approximation problems. In this sense, the proposed method is
very robust and efficient.

An numerical example from structural analysis under static loading conditions shows the applicability
of these concepts. The probabilistic and structural analysis tasks are performed with the SLang software
package.

Keywords Monte Carlo simulation; response surface; reliability analysis; nonlinear systems; stochastic
mechanics; directional sampling; adaptive sampling
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Figure 1: fX(x): joint probability density function, g(x): structural response function, g(x) = 0: limit
state function.

1 Introduction

The structural behavior near the structural failure state is most important in the reliability analysis.
The structural design parameters, such as loadings, material parameters and geometry, are the set of
basic random variables X which determine the probabilistic response of structural systems. The failure
condition is defined by a deterministic limit state function

g(x) = g(x1, x2, . . . , xn) ≤ 0

as shown in Fig. 1. The failure probability of a structural system is given by

P (F ) = P [X : g(X) ≤ 0] =
∫

n. . .

∫
g(x)≤0

fX(x)dx (1)

where fX(x) is the joint probability density function of the basic random variables.
Normally, the response function g(x) of a structural system is described implicitly, e.g. through

an algorithmic procedure within finite element analysis. Alternatively, the original structural response
function can be approximated by a response surface function g̃(x) which has polynomial form (Rackwitz
(1982); Faravelli (1986); Bucher & Bourgund (1987, 1990)).

A commonly used method for response value approximation is the regression analysis. Usually, the
approximation function is a first order or second order polynomial (Box & Draper (1987); Myers (1971)).
As an example in the (n = 2)-dimensional case, k-responses (k = 1, ...,m) will be approximated using a
least square quadratic polynomial in the following form:

g̃k(x) = β1x1k + β2x2k + β11x
2
1k + β22x

2
2k + 2β12x1kx2k + εk (2)

Herein the term εk represents the approximation errors. The approximate coefficients β can be calculated
using the least square postulate

S =
m∑

k=1

ε2k = εT ε → min

Additional the limit state function g(x) = 0 can be interpolated by second order polynomials (Bucher
et al. (1989); Ouypornprasert & Bucher (1988); Bucher et al. (1988)).

One of the major advantages of the response surface method lies in its potential to selectively deter-
mine the number of structural analyses of the support points. This is especially helpful if some overall
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Figure 2: Limit state interpolation using normal hyperplanes.

knowledge on the system behavior - particularly near to the failure region - is a priori available. By such
means the computational effort can be substantially reduced.

On the other hand, the global approximation schemes widely used in the application of the response
surface method can be quite misleading due to the lack of information in certain regions of the ran-
dom variable space. It is therefore required to avoid such undesirable interpolation errors at reasonable
computational effort.

Standard differentiable (e.g. second order polynomials) approximations are not sufficiently flexible.
They always need a predefined number of limit state check points in unimportant regions (or directions)
in order to avoid approximation problems in the important region. The maximum number of limit state
check points is restricted too.

In the present paper new local or global interpolation strategies for the response surface method
are proposed. Lengths and angles of the limit state check point vectors are being used only without any
additional geometrical conditions. This is reasonable because, in general, the limit state function between
the check points is unknown. Using a combination of adaptive directional sampling these response surfaces
can be adaptively refined to consistently increase the accuracy of the response surface function.

2 Polyhedral response surfaces

2.1 Introduction

Non-differentiable polyhedral response surface functions, see e.g. Guan & Melchers (1995, 1997), avoid
some problems but need a fairly large number of check points in the case of a closed safe domain. By
using a high number of locally concentrated check points approximation problems may appear as well.
In the following two local response surface interpolations are presented: normal hyperplane interpolation
and a modified secantial hyperplane interpolation (first announcement in Roos et al. (1999)).

2.2 Normal hyperplanes

Let the limit state check points Pi(x) be defined by their distance vectors pi from a center point M with
coordinate vector m. For the subsequent analysis, M must be located in the safe domain, e.g. defined
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by the expected values of all random variables m = {E[X1], E[X2], . . . , E[Xn]}T :

pi = li −m

with the limit state check point vectors in Cartesian coordinates li(x). The sampling point Rj(x) is
selected from the mean values. Thus the angles between the sampling point j and any limit state check
point i are given by

cos φij =
pT

i rj

‖pi‖‖rj‖
Assume that the hyperplane of any limit state point with respect to the mean value is given by the
Hessian normal form

eT
pi

fijrj = ‖pi‖

then the factors

fj =
‖pi‖
eT

pi
rj

∣∣∣∣
i:cos φij→max

as shown in Fig. 2, give the response surface function

g̃(x) = m(x) + fjrj(x)

in cartesian coordinates. The normal hyperplane type response surfaces as defined here will be star-shaped
with respect to the center point M (but not necessarily convex in any case).

2.3 Secantial hyperplanes

An alternative polyhedral function is provided by the following algorithm. For the n dimensional random
variable space a n-dimensional hyperplane can be determined by n limit state check points. Such a
hyperplane results from the linear combination

g̃(x1, . . . , xn) = m(x1, . . . , xn) + p1 + α1(p2 − p1) + . . . + αn−1(pn − p1) (3)
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as shown in Fig. (3). The equation system

[p2 − p1 . . .pn − p1 − r] [α1 . . . αn−1 f ]T = −p1

leads to the intersection point between the hyperplane and the sampling point vector. Here, the first
plane check point should be a vector pi with the property cos φi → max. In order to select the next limit
state points (p2, . . . ,pn) we can use (cos(φi) → max : cos(γi) > 0) as shown in Fig. 4. This criterion
ensures the section of the half space which is of interest. The normal vector n is given by

n = r−
n−1∑
l=1

βlpl (4)

and
nT pm = 0 (5)

for all (l,m = 1 . . . n − 1). The equations (4,5) give the following equation system with the maximum
size (n− 1). (

n−1∑
l=1

βlpl

)T

pm = rT pm

With the coordinates βl of the nadir we obtain the normal vector using the equations (4) and (5). In
case that the coefficients matrix P = pT

l pm is singular we can simply determine the factor f by

fr =
n−1∑
l=1

βlpl (6)

because that means n = 0. The solution of equation (6) is given by the linear least squares problem

‖fr−
n−1∑
l=1

βlpl‖ → min

Finally, we have to check these points which were found for computing the hyperplane with the conditions

αl ≥ 0;
∑

l

αl ≤ 0 ∀ (l = 1 . . . n− 1)

That means that the intersection point of the sampling vector with the hyperplane is inside the plane.
Otherwise we have to interchange the n-th limit state check point with the closest point on the correct
half space.

2.4 Weighted radii response surfaces

A global or local response surface method is the weighted radii interpolation. Let the limit state
check points Pi(x) be applied to mean value coordinates on the expected values of all random variables
E[X1], E[X2], . . . , E[Xn] by

pi = li −m

with the limit state check point vector in cartesian coordinates li(x) and the mean value vectors m(x).
The sampling point Rj(x) is selected from the means with r(x) = x−m. Thus the angles between the
sampling point j and any limit state check point i is given by

cos φij =
pT

i rj

‖pi‖‖rj‖
0 ≤ φij ≤ π

Assume that the weights of any sampling point are given by

wij =
1

φij
(7)
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Figure 5: Limit state interpolation using weighted
radii.
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Figure 8: Response surface by using nonlinear
weights.

then the factors

fj =

∑
i

‖pi‖wij∑
i

wij

as shown in Fig. 5, give the response surface function

g̃(x) = m(x) + f
r(x)
‖r(x)‖

= 0

on the cartesian coordinates. The simple assumption (7) generates a closed response surface function. To
eliminate the numerical discontinuity near φij = 0 we can introduce a small value ε in the equation (7)

wij =
1

φij + ε

The response surface function for some limit state check points using linear weights is shown in Fig. 7.
Introducing nonlinear weights such as

wij =
(

1
φij + ε

)2
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will form a differentiable function in the supporting points, as shown in Fig. 8. Using the presented inter-
polation, there are no difficulties in near of discontinuities, as shown in Fig. 6, in contrast to polyhedral
and polynomial response surface functions.

3 Adaptive directional sampling

The unit vectors simulation can be shifted to the dominant areas of the standard Gaussian space. Any
point u in this space can be written in polar coordinates

u = ra

Herein
r = ‖u‖

is the vector length of u, measured relative to the point of origin and

a =
u
‖u‖

is a unit vector who determines the direction. Now we introduce a specific simulation density function
hY(a) for the directions a. The postulation that the first and second moments are equal to the statistical
moments of the failure samples (Bucher (1988))

E[Y] = E[A|g(r∗(a) a) ≤ 0]

E[(Y − Ȳ)(Y − Ȳ)T ] = E[(A− Ā)(A− Ā)T |g(r∗(a) a) ≤ 0]

produces an approximation of the ”optimal” sampling density. Instead of it can be used

E[Y] =
∑N

i=1 ai wi∑N
i=1 wi

E[(Y − Ȳ)(Y − Ȳ)T ] =
∑N

i=1 wi(ai − ā)(ai − ā)T∑N
i=1 wi

in order to determination of the sampling density, as defined in Kijawatworawet (1991); Kijawatworawet
et al. (1998). Whereas the weights wi are defined by

wi =
∫ ∞

r∗i (a)

rn−1
i exp

(
−r2

i

2

)
dri

4 Numerical example – buckling collapse of a parabolic shell

4.1 Mechanical system and random variables

An example serves to demonstrate the applicability of the adaptive response surface method using the
polyhedral and weighted radii interpolation and to discuss some properties of the method. The com-
putational probabilistic and structural analysis tasks were implemented in the software package SLang
Bucher et al. (1995). SLang integrates geometrically and physically nonlinear finite elements as well as
different sampling strategies such as importance and adaptive sampling. Herein the mechanical system
is a parabolic shell, as shown in Fig. 9, subjected to horizontal and vertical loads, 13X1 and 40X2. The
constitutive relation of the shell elements is von Mises plasticity without hardening. The structure is
modeled with 120 geometrically nonlinear shell elements (SHELL93, Young’s modulus 2.1E11 N/m2,
yield stress 2.4E8 N/m2, Poisson’s ratio 0.3). It is assumed that the applied vertical and horizontal loads
as well as the shell thickness are independent Gaussian random variables with statistics given in Table 1.
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Figure 9: Finite element discretization subjected to loads.

Table 1: Statistical data for loads and thickness
Mean Std.Dev Type

Horizontal Load E[X1] = 2.8e + 07 σX1 = 3e + 06 normal
Vertical Load E[X2] = 2e + 07 σX2 = 1e + 06 normal

Thickness E[X3] = 0.5 σX3 = 0.005 normal
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Figure 10: von-Mises stresses and displacements for one chosen limit state point.

4.2 Nonlinear finite element limit state analysis

We obtain the physically nonlinear finite element reference result by using directional sampling (Deák
(1980); Bjerager (1988); Ditlevsen & Bjerager (1988)) with 700 support points. Limit state points were
determined by means of incremental analysis. The loads are incremented until collapse of the structure.
The failure in equilibrium iteration was used to determine collapse of the structure. Numerically, this is
defined by non-convergence of the Newton-Raphson iteration or the singularity of the tangential stiffness
matrix. The distribution of the von-Mises stress at collapse under equal horizontal and vertical load is
shown in Fig.10. In obtaining these result, the loads were incremented proportionally up to collapse of
the structure. Hence no path dependence was considered in the analysis. A set of 700 failure points was
calculated using directional sampling as shown in Fig. 11. For the statistical data as given in Table 1 the
failure probability is calculated as P̄ (F ) = 6.2357 · 10−6 with a statistical error (standard deviation) of
σ2

P̄ (F )
= 9.5434 · 10−7.

In a first step, the random directions required for directional sampling and the response surface
strategy are simulated in a master process. These values are then distributed among different SLang slave
processes which are launched in parallel. Finally the master process evaluates the data collected by the
slave processes and determines the strategy for the next run. The analysis was carried out in less than
10 hours on an SGI Origin 2000 with 14 processors.

4.3 Adaptive response surface interpolation

Starting from a sample of unit direction vectors we obtain the critical distances on the limit state. A
sampling density can be derived and the second run results additional limit state points. Now the new
response surfaces can use all of the limit state points and additionally any support points, for example
in direction of the axis. Fig. 13 shows N = 42 limit state points using random search directions. The
search direction simulation is adaptive shifted to the dominant areas of the standard Gaussian space. The
additional limit state points are shown in Fig. 14 and 15. The failure probability for arbitrary structures
exhibiting nonlinear behavior can be calculated by Monte Carlo simulation. In order to reduce the sample
size, an importance sampling concept is used, which automatically adapts the simulation densities in three
subsequent simulation runs (Bucher (1988)). Fig. 16 to 21 show the response surfaces using adaptive
response surfaces using the polyhedral and weighted radii and first run and second adaptation of the
importance sampling. We obtain following convergence of the failure probabilities in dependence on
the number N of points on the limit state surface, as shown in Fig. 22. The weighted radii interpolation
starts from the polynomial result (Bucher et al. (1989)). The slow convergence of the secantial hyperplane
method is not surprising, because it represents a consistently safe interpolation. Hence with 28 support
points we obtain quite accurate results of the proposed adaptive response surfaces using weighted radii.
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Figure 16: u1-u2-plane, interpolation us-
ing normal hyperplanes, first run of the
importance sampling.
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Figure 17: u1-u2-plane, interpolation us-
ing normal hyperplanes, second adapta-
tion of the importance sampling.
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Figure 18: u1-u2-plane, interpolation us-
ing secantial hyperplanes, first run of the
importance sampling.
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Figure 19: u1-u2-plane, interpolation us-
ing secantial hyperplanes, second adapta-
tion of the importance sampling.
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Figure 20: u1-u2-plane, interpolation us-
ing weighted radii, first run of the impor-
tance sampling.
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Figure 21: u1-u2-plane, interpolation us-
ing weighted radii, second adaptation of
the importance sampling.
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Figure 22: Convergence of the failure probabilities in dependence on the number N of points on the limit
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5 Concluding Remarks

The proposed methods are suitable for computing the reliability of complex structures. The main advan-
tage of these methods is their flexibility for the interpolation of highly nonlinear limit state functions. In
particular, these response surfaces can be adaptively refined to consistently increase the accuracy of the
estimated failure probability. In this sense, the proposed methods are very robust and combine the ad-
vantages of adaptive directional sampling and efficient response surface methods. It should be mentioned
that application of this type of response surface should preferably be done in standard Gaussian space.

The response surface interpolation using weighted radii used lengths and angles of the limit state check
point vectors only and not any additional geometrical conditions. This is reasonable because, in general,
the limit state progression between the check points is unknown. When we have one check point only we
obtain a circular safe domain - the most rational assumption. The nonlinear weights produce smooth and
continuous functions. We can use any many as you like check points as well local concentrative without
approximation problems.
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Guan, X.L. & Melchers, R.E. (1995). Reliability Analysis using Piece-Wise Limit State Surface.
APSSRA95, Asian-Pacific Symposium on Structural Reliability and its Applications, November 12-
14, Tokyo, Japan.

Guan, X.L. & Melchers, R.E. (1997). Multitangent-plane surface method for reliability calculation. Jour-
nal of Engineering Mechanics, 123.

Kijawatworawet, W. (1991). An Efficient Adaptive Importance Directional Sampling for Nonlinear Reli-
ability Problems. PhD Thesis, Institute of Engineering Mechanics, University of Innsbruck, Innsbruck,
Austria.
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