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Summary 
One of the most important tasks of vehicle development is the steady improvement of 

passive safety systems. In the past deterministic models were used for the virtual 

dimensioning of passive safety systems. In reality, however, significant scatter can be 

observed when performing crash-tests. Cause of this scatter of important vehicle 

performance variables is scatter of variables concerning the dimensioning of passive safety 

systems and vehicle structure, the material, the loads and the testing conditions. This results 

in the necessity to pre-compute not only single values but also to be able to extract 

information about the scattering of important evaluation variables from simulation as reliable 

as possible. Considerations of input scatter, as foundation of an economical dimensioning of 

restraint systems concerning scattering performance variables, can only be obtained by 

integrating stochastic observation and simulation methods into virtual product design [1-2]. 

The BMW AG uses systematic computational robustness evaluations obtained by stochastic 

analysis for dimensioning of restraint systems since beginning of 2005. After one year of 

methodical covering of the procedure [3] computational robustness evaluations will become a 

defined milestone of their virtual development process of passive safety systems in 2006. 

Primary result of the robustness evaluations is the calculation of the scatter-band of 

performance variables and of the connected probability of achieving safety goals. Secondary 

result is the investigation of the numerical stability of the models and identification of the 

input scatter, which is responsible for the output scatter. The robustness evaluations thereby 

give important information about necessary improvements of the numerical models as well 

as information about the necessity to reduce input scatter or information about necessary 

modifications of the restraint systems. 
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1. Introduction 
In the past deterministic models were used by multi-body or finite element programs for 

dimensioning of passive safety systems. In reality, however, significant scatter can be 

observed when performing crash-tests. Cause of this scatter of important vehicle 

performance variables is scatter of variables concerning the dimensioning of passive safety 

systems, vehicle structure, the material, the crash-test dummies, the loads and the testing 

conditions. This results in the necessity to pre-compute not only single values but also to be 

able to extract information about the scattering of important evaluation variables concerning 

the expected test results as reliable as possible. The BMW AG uses systematic 

computational robustness evaluations obtained by stochastic analysis for dimensioning of 

restraint systems since beginning of the year 2005. 

The necessity of integration of stochastic simulation methods is determined by further trends 

in virtual product design. 

• By increasing optimisation, designs can reach their limits and become very sensitive 
towards scattering 

• Because hardware cycles occur later and less often, the influence of scatter, which was 
still prominent in hardware tests and its influence thereby was at least detected by 
sampling, has to be taken into account in virtual product design. 

• If larger changes in construction are made within very short time (high innovation speed) 
and more and more complex component systems concur the a priori knowledge 
(experience) about reliable functionality possibly is very small. Therefor the robustness of 
the systems has to be determined using virtual models. 

• Substantial vehicle concept decisions have to be made in an early stage of development 
basing on virtual dimensioning. This requires best possible knowledge about the degree of 
fulfilling the goals (laws, consumer protection) and respectively a quantitative estimation of 
the remaining risk. 

 

2. Computational Robustness Evaluation using Variation Analysis 
Computational robustness evaluations examine the sensitivity of important evaluation 

parameters concerning the scatter of physical input parameters [4]. Primary goal of 

computational robustness evaluations is the calculation of the range of variation of important 

response variables and the evaluation by standards of “robust” restraint systems. In passive 

safety the legislator sets limit values and the vehicle developers set their own target values 

with a security distance to the limit values. Furthermore the vehicles should get an as good 

as possible evaluation in tests by consumer protection (e.g. EURONCAP). These 

requirements should be met by the majority of the vehicles. However verifying rare 

transgression probabilities (one in one million) is not the main goal. Therefore variance 

analysis is suitable for robustness evaluation of passive safety systems. Hereby all of the 

potential input scatter or uncertainties in the modelling are introduced in virtual product 
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design by using scattering input variables in the numerical models. Using appropriate 

sampling methods a sample set of n-possible vehicles and n-possible constraints for the 

crash test are generated and then computed n-times. After the computation the sample set is 

then evaluated using statistical methods for estimation of variance and correlation analysis. 

In order to estimate the scatter of the result variables from the sample usually mean value, 

standard deviation, coefficient of variation and the range of variation (min/max value) are 

determined for every response variable. If the detected ranges of variation lie to close to the 

limit values or even exceed these, one has to ask for the frequency (probability) of exceeding 

the limits. If overstepping occurs in the calculated support point set, the frequency can be 

counted. In statistics one would talk about determining the empirical probabilities directly 

from the histogram. Alternatively distribution functions of the result variables can be assumed 

and the probabilities can then be computed from the characteristic values of the distribution 

function. It shall be noted at this point that it has to be verified if the chosen distribution (for 

example the normal distribution) is a sufficient approximation of the actual distribution. Since 

usually only the histogram of the 100-200 computations is available, determining the 

transmission probabilities directly from the available raw data (the histogram) is 

recommended for probabilities in the percent range. Usually the base of verification is 

missing for reliable estimations of significantly smaller transmission probabilities from 

distribution hypotheses. If small probabilities (for example smaller than 1 in 1000) shall be 

ensured, methods of reliability analysis should be applied [5-8]. Since they are only 

affordable in relatively small parameter dimensions, robustness evaluations using variance 

analysis normally are a necessary preliminary stage for reduction of the parameter space. 

 

For significantly scattered result variables or transgression of limits the responsible input 

scatter is identified using correlation analysis. For this purpose pairwise linear and quadratic 

correlation coefficients of result and input scatter are computed. The correlation coefficients 

can obtain values between 0 and 1 (-1) and show the pairwise interrelation between a single 

input scatter and a single output scatter. For identification of mechanisms in which multiple 

input scattering affects on output scatter the principal components (the eigenvectors of the 

correlation-matrices) can be evaluated.  

 

In the following it is estimated how much of the result variation can be explained using the 

calculated (linear and quadratic) correlations. This is done by using measures of 

determination [9]. The determinedness of a result variable regarding the variation of all input 

scatter describes which percentage of the result variation can be explained by the found 
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correlations to the input variables. If the coefficient of determination of a result variable is 

high (at most 100%) the fundamental interrelations can be described using the underlying 

correlation hypothesis. The smaller the coefficients of determination are the larger the part of 

the variation of result variables becomes which can not yet be explained by the correlation 

hypothesis (e.g. linear and quadratic). Typically then non-linear correlations, clustering, 

“outlier” or a high amount of “numerical noise” exist. This way the measure of determination 

also provides information on the possible ratio of numerical noise and should be used as an 

important quality measure for the used modelling. In the robustness evaluations performed 

so far it could be detected that for coefficients of determination larger than 80% the influence 

of numerical noise on the performance variables was acceptable. 

 

Choice and complexity of the sampling methods have to be adjusted according to the 

important statistical measures which are to be estimated. Normally the complexity of the 

sampling method is adjusted according to a reliable identification of linear coefficients of 

correlation. Thereby the number of computations for robustness evaluations of restraint 

systems results in about 100 to 200 per load case that is to evaluate [9]. The type of 

sampling method also is optimised for as reliable as possible estimations of correlations. 

Suitable method for this is a Latin-Hypercube-method which fulfils an input distribution 

function as well as it minimises the deviation between defined input correlations and input 

scatter. 

 

3. Requirements for Systematic Integration of Computational Robustness Evaluations  
For the systematic introduction of stochastic computation methods at least two essential 

boundary conditions have to be fulfilled. 

• The available knowledge about input scatter and uncertainties e.g. in boundary conditions, 
material values or load characteristics is to be transferred to an adequate statistic 
description and is to be integrated into stochastic analyses in virtual product design as 
fundamental input information. 

• At the same time it has to be ensured that the used numerical models include all physical 
phenomena which are connected to fundamental scatter and that the approximation 
methods (explicit FEM, multi-body dynamics) do not create too much scatter (numerical 
noise) of the performance variables. 

 

The quality of the prognosis of the output scatter does explicitly depend on the close to 

reality definition of the input scatter. Only if it is ensured that the entire input scatter, which is 

fundamental for the evaluated performance variables, is captured and that the numerical 

models and the CAE-process allow an adequate prognosis, the resulting scatter of the result 

variables is reliable. It should be stated that on the way to that point already valuable insights 
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on the transmission mechanisms of single input scatter could be gathered and the quality of 

numerical simulation can be improved significantly. In practical applications one often can not 

assume that all fundamental input scatter can be captured close to reality at the beginning of 

stochastic computations and that all simulation models have a sufficient numerical quality. 

Therefore one will realistically start with relatively rough assumptions about the input scatter 

and the input uncertainties respectively and then improve as well the knowledge about 

important input scatter and the numerical models quality step by step. Significant scattering 

input variables in virtual dimensioning of restraint systems are e.g. scattering of the airbag 

variables, scattering in the belt-system and the seat position of the crash-test-dummy. 

Numerical dummy models are available as validated FE- or multi-body-formulation. Besides 

dummy models also so called “stochastic” dummies are available. Here the input scatter of 

dummy variables is identified from an amount of validation experiments. Considering this 

input scatter the “stochastic dummy” shall generate a similar scatter of important dummy 

variables, as they were observed in the validation experiments. It shall be pointed out that all 

stochastic dummies known to us are “only” tuned to a corridor of the experimental results. 

Information about the distribution within this corridor was not taken into account during 

validation. These stochastic dummies are therefor only suited for calculation of a variation 

range and not for the calculation of overstepping probabilities concerning legal limits and 

consumer protection criteria, wherefore they were not used so far at BMW. For the validation 

of new “stochastic” dummies histograms of the input scatter from the identification of the n-

validation experiments shall be identified and used as foundation for the statistic input 

information. Then also the distribution information is included and transgression probabilities 

resulting from dummy scatter can be determined. 

 

3.1 Statistic Description of Input Variables 
Physical input scatter is described using distribution functions. Important distribution function 

types are e.g. uniform distribution for friction values, normal distribution for mass flow values 

or log-normal distribution for material strength. If correlations between single scattering input 

variables exist, they have to be taken into account for the input information using adequate 

correlation models.  
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Figure 1: Correlation between the scattering tensile strength and the yield strength of steel 
 

As an example for important interrelations between input scatter the correlation between 

tensile strength and the yield strength of steel shall be mentioned. In this case one would 

determine the linear correlation coefficient between both of the scattering input variables for 

example from available experimental data (shown in figure 1 with a correlation coefficient of 

0.66) and consider it as important input information in sampling methods.  

 

3.2 Requirements for the Automation of CAE Processes 
Besides the fundamental standards of an automated succession of the realisation and 

computation of a varied design as well as the extraction of performance variables even more 

standards for the automation of the CAE-process can result from robustness evaluations. 

The scattering in the positioning of the dummy often significantly influenced the scatter of 

important response variables of passive safety load cases. So far one abandoned the 

readjustment of the positioning of feet and arms when automatically varying the x- and z-

position of the dummy. Therefor the feet did not stand exactly in the feet room. However, 

since the stochastic variation of the dummy position was a decisive factor in many 

robustness evaluations the need for automation in positioning arose. In 2006 an update of 

the dummy position after variation of the H-point was introduced for some MADYMO 

dummies and included into the automated workflow of robustness evaluations.  
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3.3 Numerical Robustness of CAE Process 
For all load cases parallel robustness evaluations concerning input parameters scattering in 

nature and “numerical” robustness evaluations concerning the variation of numerical 

parameters were performed in the beginning of the systematic introduction of computational 

robustness evaluations. The evaluation of numerical robustness of the model results from the 

experience that already the variation of numerical parameters of the approximation method 

leads to large scatter of result variables and respectively sometimes leads to obviously 

unusable results. If n-designs are computed and their variation is analysed statistically one 

has to ask how much of the result variation derives from problems within the approximation 

method. Evaluation criteria to tell if a model is numerical robust was the proportion of the 

resulting output scatter. If the scatter came from the influence of variation of numerical 

parameters, like time step increment, hourglass mechanisms or contact settings were for 

example a power of ten smaller than the scatter resulting from physical input scatter, one 

assumed that the models delivered prognoses which were numerically stable compared to 

the expected real scatter. However, the question by what degree a numerical parameter 

should be varied arose quickly. Respectively it was asked how reasonable a variation of 

numerical parameters which often had been “adjusted” by component verification is overall. 

In summary it had to be concluded that numerical problems of the models can be discovered 

(amount of resulting scatter clearly is to high or occurring of obviously wrong results) using 

numerical robustness evaluations but it was not possible to quantitatively evaluate if the 

numerical models were “robust” enough. It should also be stated that numerical robustness 

evaluations can differ for every point in the “physical” space of the robustness evaluation. 

Contact algorithms shall be pointed out as an example which flawlessly execute in the 

reference design as long as the numerical parameters are varied but when considering the 

scatter of geometric parameters fail. 

 

3.4 Using Measures of Determination to Secure Model Robustness 
The influence of numerical noise on the results should better be estimated using the 

measure of determination of robustness evaluations concerning scatter as it occurs in nature. 

If the coefficient of determination of the robustness evaluation is large only a small of 

proportion variation remains unidentified. This proportion may include numerical noise. In 

order to use the coefficient of determination of result variables as quantitative measure for 

numerical model robustness the determination proportions of the found correlations have to 

be estimated with sufficient statistic certainty. This formulates also requirements of the 

sampling method, the amount of computations and the statistic algorithms for estimating the 
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coefficient of determination [9]. This resulted in important specifications for further 

development of the stochastic methods, which were included in optiSLang [19] step by step 

within the first stage of the project. After having made very positive experience with the 

estimation of the influence of numerical noise using coefficients of determination of 

robustness evaluations, the workflow was reconverted for virtual product development 

process. Now robustness evaluations regarding real-world scatter are performed for all 

important load cases and only in the case of low coefficients of determination the numerical 

robustness evaluation is used for diagnosing numerical problems. Thereby as a general rule 

coefficients of determination of over 80% could be determined for “numerically” robust 

models after incorporating linear and quadratic correlations and after eliminating outliers and 

clustering. So far it was a certain sign that the result variable contained an unacceptable 

coefficient of numerical noise if the coefficient of determination fell below 60%. This was 

caused by insufficiency of the result extraction and especially by insufficiency of the 

numerical models interacting with the numerical approximation methods. After repairing the 

numerical model the coefficient of determination normally rose to over 80%. 

It shall be stated that it is theoretically not possible to identify the proportion of numerical 

noise doubtless. The detour eliminating linear and quadratic correlations as well as the 

influence of outliers and clustering on coefficients of determination identifies a remainder of 

“unexplained” scatter of the result variables, which potentially derives from higher 

dimensional (cubic, sine-shaped) correlations, further nonlinearities (bifurcation points) or 

from numerical noise. This diagnosis excludes systematic errors or the inability to map 

significant physical effects of input variables to the output variation. The fundamental ability 

of prognosis of the numerical models has to take place by verifying experimental data. The 

topic of bifurcation points has to be taken into account separately. Systems with bifurcation 

points, which can be traversed within the scatter range of input variables and lead to 

fundamentally different system responses, would be something that should be prevented in 

terms of robust design. Basically one, however, also has to be able to find correlations 

associated with that type of incident, otherwise it would be implied that these bifurcations 

happen randomly and we are dealing with very sensitive dynamic systems. In general the 

correlation between input variables and output variables should be identifiable for robust 

design. These correlations then show the possibilities to influence the result scatter. They 

can be used for reduction of the probability of overstepping e.g. for linear correlations by 

moving mean values or for quadratic correlations by reducing input scatter or changing the 

transmission behaviour of input scatter and output scatter by constructive changes. 

 

page 8 



4. Integration of Robustness Evaluations in the Virtual Development Process of 
Restraint Systems  
One should assume that a consequent introduction of stochastic computation methods can 

be divided in at least two phases. 

Phase 1: Scatter and uncertainties of input variables are estimated from a few 

measurements and empirical values: 

• Transfer of existing knowledge on input scatter and uncertainties of testing conditions in 
distribution functions as suitable input for stochastic methods. 

• Robustness evaluation of important crash-test load cases, estimation of the variance of 
important vehicle performance variables, inspection if limit values are exceeded by the 
variation of the performance variables. 

• Inspection of model robustness/stability using coefficients of determination. 
• Extraction of significant scattering input variables and coefficients of determination of 

transmission behaviour of the input scatter on important performance variables as well as 
the matching of these mechanisms with expectations and knowledge based on the 
experiments.  

 
Within and respectively as result of phase 1 the following has to be discussed and arranged: 

• At which point in time robustness evaluations of components, modules or whole vehicles 
are performed 

• For which input scatter the assumptions about the scatter have to be re-evaluated and as 
the case may be verified 

• How scatter of critical performance variables can be reduced or relocated 
• Which exceeding probabilities are tolerable for the performance variables 
 

Phase 2: sensitive scattering input variables are known and the assumptions about their 

scatter are verified: 

• With secured knowledge about the input scatter robustness evaluations are performed at 
predefined milestones of virtual product process 

• Assuming that all important input scatter were considered close to reality and that the 
numerical models show negligible numerical noise then the estimate of the scatter of 
important input variables is trustworthy. 

 

In the second year of the serial use of stochastic analysis in passenger simulation at BMW 

we currently are in phase 2. The following surplus value could be obtained concerning 

dimensioning and increase of the robustness of the restraint systems: 

• Development of a better understanding of the transmission mechanisms of input scatter 
on significant performance variables 

• Identification of the significant scattering input parameters and securing of knowledge 
about their scattering 

• Identification of model weaknesses and reduction of numerical noise of significant vehicle 
performance variables. Thereby increasing the model robustness/stability and of the 
quality of prognosis of crash-test computations  
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• Recognising of robustness problems of the restraint systems and in cases of high 
exceeding of aimed at limits with the consequence of redesign of components  

• Further development of the numerical method of robustness evaluation (quadratic 
correlations, coefficients of determination, trustworthy estimation of probabilities to exceed 
limits from the histograms)  

• Further development of the degree of automation in robustness evaluation by automatic 
readjusting of the dummy positioning for MADYMO models 

 
 
5. Practical Application 
 
5.1 Robustness Evaluation USNCAP 
For the load case USNCAP (front crash 56 km/h into rigid wall) the robustness concerning 

important performance variables of the driver was evaluated. The model was constructed 

using MADYMO. The robustness evaluation was performed using optiSLang [10]. Important 

parts of the restraint systems and the Dummy were used in multi-body-formulation. The FE-

model of the airbag was validated by the supplier with component experiments and 

integrated into the BMW passenger model. 
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Figure 2: Simulation frontal crash load case USNCAP 
 

For the robustness evaluation 200 variants were generated using Latin Hypercube Sampling 

and then computed. Overall 9 physical parameters of the multi-body/FE-modelling were 

varied and 12 dummy result variables were evaluated in robustness evaluation. For the 
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definition of scatter the normal distribution and respectively cut-off normal distribution were 

used. The following scattering input variables were taken into account during robustness 

evaluation: 

• Scattering of the time to fire of airbag and load-limiter 
• Scattering of the dummy seat position 
• Scattering of mass flow, permeability of the airbag 
• Scattering by the load limiter 
• Scattering of friction between dummy and airbag as well as between dummy and belt 
 

The following result variables were examined in the robustness evaluation: 

• Head resultant acceleration 3 ms 
• Chest resultant acceleration 3 ms 
• Pelvis resultant acceleration 3 ms 
• HIC15 head injury criterion 15 ms 
• HIC36 head injury criterion 36 ms 
• Viscous criterion 
• Shoulder belt force 
• Chest deflection maximum 
• Head x- / z-displacement 
• Femur compression left / right 
 

 
Figure 3: Linear correlation structure 

 

Of the 9 input scatters only 5 input variables feature notable correlations to the result 

variables. In the matrix of linear correlation (figure 3) for all important performance variables 
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significant linear correlations to the input scatter could be determined (correlation coefficient 

> 0.50). For most of the result variables a high coefficient of determination (>80%) of linear 

and respectively quadratic correlation (shown in figure 4 with 97 % determination for the 

maximum of the femur forces) could be determined. The significant output variable HIC36, 

however, only showed a coefficient of determination of 66 % (figure 5). 

 
Figure 4: Coefficients of determination femur force left 

 

 
Figure 5: Coefficient of determination HIC36 

 

Also in tests for quadratic correlation, outliers or clustering no further correlation could be 

shown. Since a large proportion of the scatter concerning the HIC36-Wertes can not be 

explained using the identified correlations to scattering input variables, a significant amount 
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of numerical noise is suspected here. Therefor the reference design of the driver was 

examined concerning numerical robustness. Overall 17 numerical parameters, like for 

example scaling factors of the time-steps, the contacts or the „numerical“ damping factors of 

the multi-body/FE-modelling were varied and 22 dummy result variables were examined in 

the robustness evaluation. For the USNCAP evaluation 2 response variables (thorax 

acceleration 3ms, HIC36) from the set of examined response variables were evaluated. 

Deciding criteria of the numerical robustness is the measure of variation of important input 

variables concerning the expected scatter of a physical robustness evaluation. As a plot in 

the star range shows (figure 6), very large variation could be observed, which lie about in the 

range of the scatter caused by the physical input scatter of this load case. Since this 

dimension of numerical noise is not acceptable, the responsible input variables were 

identified. 

 

 

Figure 6: Visualisation of the numerical scatter in the star diagram, USNCAP Rating 
 

 the matrix of the linear correlations (figure 7) it can be easily seen that significant In

correlation to the variation of a multi-body time step exist, which obtain a correlation 

coefficient of 0.7. Furthermore clustering could be identified in the anthill plots (figure 8). By 

analysing “suspicious” result sets some incapacities of modelling the contact between airbag 

and dummy could be identified and eliminated. A final numerical robustness evaluation 

proved a significantly smaller scatter caused by the variation of numerical parameters (figure 
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9), which could be ignored considering the scatter from physical input variables. Thereby the 

numerical robustness of the improved modelling could be proven and the foundation for 

evaluation and optimisation of the restraint system was laid. (Notice: At this point in time the 

performance value of the reference design had been relocated in the 5-star area by 

constructive measures). Recapitulating for this load case modelling errors could be identified 

and eliminated and the final robustness evaluations showed an acceptable measure of 

scattering of important input variables. 

 

 

Figure 7: Linear correlation matrix 
 

 

ion of correlations between the variation of multi-body time step and the Figure 8: Visualisat

 
shoulder belt force in the anthill-plot 
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Figure 9: Visualisation of numerical noise in the star diagram, USNCAP Rating 
 

5.2 Robustness Evaluation FMVSS 208 
In an early stage of vehicle design the robustness of the load case FMVSS 208 (Frontcrash 

40 km/h unbelted into rigid wall) was evaluated concerning important performance variables 

of the driver and front-seat passenger.  

 

Figure 10: Simulation passenger safety load case FMVSS 208 
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The model was constructed in MADYMO and computed. Important parts of the Dummy were 

used in multi-body-formulation whilst the airbag was modelled using an FE-formulation. For 

the robustness evaluation 200 variants were generated using optiSLang Latin Hypercube 

Sampling and then computed. Overall 27 physical parameters of the multi-body/FE-modelling 

were varied and 18 dummy result variables were evaluated in robustness evaluation. For the 

definition of scatter the normal distribution and respectively cut-off normal distribution were 

used. The following scattering input variables were taken into account of during robustness 

evaluation: 

• Scattering of the time to fire of airbag and load-limiter 
• Scattering of the dummy seat position 
• Scattering of mass flow, permeability of the airbag 
• Scattering by the load limiter 
• Scattering of friction between dummy and airbag, airbag and steering wheel as well as 

between dummy and seat 
• Scattering of impact puls 
• Scattering of feet space, foot rest, pedal 
 
The following result variables were examined in the robustness evaluation: 

• Head resultant acceleration 3 ms  
• Chest resultant acceleration 3 ms  
• Pelvis resultant acceleration 3 ms  
• HIC15 head injury criterion 15 ms 
• Head displacement x 
• Pelvis displacement x 
• Chest deflection 
• Steering column displacement 
• Neck compression 
• Neck tension 
• Neck injury: tension-extension 
• Neck injury: tension-flexion 
• Neck injury: compression-extension 
• Neck injury: compression-flexion 
• Distance head – roof (virtual penetration) 
 

Most important result of the robustness evaluation was the calculation of variation intervals of 

the performance variables (figure 11). Even though no limits were exceeded the scatter of 

single performance variables was high.  
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Figure 11: Visualisation of the normalised variation ranges 

 

Of the 29 input scatters only 9 input variables show significant correlation to the result 

variables. Within the matrix of the linear correlations (figure 12) not for all important 

performance variables significant linear dependencies (correlation coefficient >0.50) on the 

input scatter could be determined. This can hint a high amount of numerical noise. Therefore 

it was examined for the result variables if higher coefficients of determination could be found 

using quadratic correlations and respectively eliminating non-linearities (outliers, clusters). 

However, no correlations which significantly affect the coefficients of determination except 

linear correlations between input and output scatter could be identified. The determination for 

single output variables thereby heavily varies. Thereby a high maximum femur force (figure 

13) can be explained with very high determination, the variation of the HIC-value, however, 

only to less than 50% (figure 14).  
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Figure 12: matrix of linear correlations 

 

 
Figure 13: Coefficient of determination femur force right 
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Figure 14: Coefficient of determination HIC15 

 

Therefor a numerical robustness evaluation on the reference model was performed in order 

to verify the model robustness. Eight numerical parameters, like for example scaling factors 

of the time steps, contact scaling factors or the „numerical“ damping of the multi-body/FE-

modelling were varied and evaluated together with 18 result variables. The resulting scatter 

of the performance variables were compared to the scatter from the physical robustness 

evaluation (figure 15). As expected the numerical noise in variables with high coefficient of 

determination from the physical robustness evaluation, like the femur forces is of negligible 

dimension. As expected, significant scatter occurs for the performance variable HIC15, 

caused by the variation of the numerical parameters. In this model the large scattering of the 

thorax values are also critical compared to the physical robustness evaluation. Even though 

these performance variables showed coefficients of determination close to 80% in the 

physical robustness evaluation, their scattering caused by variation of numerical parameters 

exceed even those of the HIC15-values. This example shows it can not be assumed that the 

measure of numerical noise concerning the trust-range can be linearly be derived from the 

coefficients of determination. If significant variation occur in the numerical robustness 

evaluation one can only assume that the calculation of scatter of the physical robustness 

evaluation is too large. However, no significant correlation (linear or quadratic) of single input 

variables of numerical characteristics concerning the observed scatter of performance 

variables could be seen. Therefor the cause of the numerical noise could not be directly 

identified from the numerical robustness evaluation. 
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Figure 15: Comparison of the variation intervals of physical and numerical robustness 

evaluation 

 

The robustness evaluations in the early stage of vehicle design showed that the performance 

variables including the consideration of input scatter lie beneath the aimed at limit values. At 

the same time it was shown that the current model stage of the multi-body/FE-modelling 

includes a large amount of numerical noise which leads to large uncertainties when 

calculating deterministic results (single values) or stochastic results (variation-ranges). 

Therefor until the next milestones the models will be reworked with the goal to reduce the 

numerical noise. 

 

6. Summary 
A method was developed and integrated into the virtual development process of restraint 

system which allows the inspection of the influence of scattering input parameters on 

significant performance variables. Primary result of the robustness evaluation is the 

calculation on the scatter range of performance variables and the connected probability of 

keeping to consumer protection criteria. Secondary result is the securing of numerical 
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stability of the models and the identification of input scatter which is responsible decisively for 

the output scatter. Thereby the robustness evaluations give important hints for necessary 

modifications of the multi-body/FE models as well as the necessity of reducing input scatter 

or hints on necessary modifications of the restraint systems. The assumptions of scattering 

input variables, which are significantly responsible for the scattering of important result 

variables, are validated systematically and where possible, backed by experimental data. 

Central performance measure for the numerical stability of the models is the coefficient of 

determination. If low measures of determination can be determined for significant result 

variables, numerical robustness evaluations are performed in order to evaluate the quantity 

of the numerical noise. At the same time correlations between the variation of numerical 

parameters and important result variables and comparisons between strongly varying result 

sets are consulted for identification of numerical problems. 

Thereby it is secured that all input scatter that is significant for the performance variables to 

estimate is captured close to reality and that the numerical models cause little numerical 

noise as well as that the prognoses about the scatter of result variables is trustworthy. 
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