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1. Introduction 

The automotive industry is one of the drivers of CAE-based virtual product development. 
Due to a highly competitive market, the development cycles of increasingly complex 
structures have to be constantly reduced while the demand regarding performance, cost and 
safety is constantly increasing. The development of innovative, high quality products 
within a short time which are able to succeed in the international car producer competition 
is only possible by using virtual prototyping. One of the greatest challenges is the 
increase of numerical simulation of large test and analysis programs including CAE-based 
optimization and CAE-based stochastic analysis while reducing the number of hardware 
tests. It is important to note that increased application of virtual prototyping itself increases 
the necessity to perform stochastic analysis. If the number of hardware tests has to be 
reduced, it is essential to implement the scatter, which is always present in those tests (such 
as loads, material, geometry), into the computational model. The increasing application of 
structural optimization also requires the robustness analysis of “optimized” designs. In 
many cases, the optimization of cost, performance and weight may lead to highly sensitive 
designs which can lead to substantial robustness defects especially in nonlinear systems. It 
is no surprise that the increase of virtual prototyping in conjunction with the reduction of 
hardware tests and development times combined with a very high innovation speed of new 
materials or electronic components do have some risks. This can be seen in the statistics of 
product recall which have increased significantly in the last time, particularly for new cars 
[6]. Therefore, the topic of robustness evaluation assuring serviceability, safety and 
reliability should be taken into account in virtual prototyping as early as possible. Here, 
robustness characterizes the sensitivity of the system response in respect of unavoidable 
scatter in the environmental conditions. Consequently, probabilistic methods using CAE-
based stochastic analysis have to be utilized in order to quantify robustness, safety and 
serviceability.  
 
Dependent on the robustness evaluation criteria, variance-based robustness evaluation 
(usually called robustness evaluation) or probability based robustness evaluation (usually 
called reliability analysis) have to be utilized. In variance-based robustness evaluation 
procedures, usually a sample set of possible realizations of input variables is generated by 
stochastic methods. The scatter of the input variables is described by probability 



distribution functions and correlation structures of scattering inputs. The scatter in the 
system responses and their significance are investigated by statistical methods with respect 
to their properties regarding correlation and variation. In probability-based robustness 
evaluations usually small event probabilities are determined using gradient (FORM) [8] or 
sampling based (ISPUD [3], adaptive sampling [4], and others) stochastic analysis 
methodology.  
 
The introduction of stochastic analysis into virtual prototyping needs a balance between the 
knowledge and the definition of input scatter, of reliability, of the stochastic analysis itself 
and of the reliability of the statistical evaluation procedure. For example, it is not useful to 
evaluate a rare event probability (6 sigma value) with pure knowledge about possible input 
scatter using 100 Monte Carlo simulations. That is very much in contrast to the 
introduction of CAE-based optimization. Here, “black box” algorithms can be used and the 
designer can limit his design space for optimization almost without the risk of producing 
useless results. In the optimization task, this would “only” result in pure or missing design 
improvement. But the absence of important input scatter or the use of non–reliable 
stochastic methods or non-reliable statistic measurements leads to useless and dangerous 
assessments of design robustness. That fact is one of the reasons that practical applications 
of CAE-based robustness evaluation are still rare compared to CAE-bases optimization.  
 
Dynardo started in 2002 with the integration of robustness evaluation into (almost linear) 
NVH applications [10]. Here, the evaluation of linear and quadratic correlation coefficients 
mainly solved the task of robustness evaluation of driving comfort criteria. The challenge 
is “only” the number of scattering variables which continuously increases, today up to 600 
full car robustness evaluations. In 2004, we started with the integration of robustness 
evaluation into forming simulations [13] and passive safety applications [12]. In forming 
simulations, it became necessary to evaluate the robustness of forming limit criteria at the 
finite element structure. Therefore, projection and visualization of statistical measurements 
became a key feature for successful robustness evaluation for forming applications [11]. In 
passive safety applications using hybrid MKS/FE-models, the quantification of numerical 
robustness became an important part of the design robustness. By developing a quantitative 
estimation of numerical noise via coefficients of determination [14], robustness evaluation 
of passive safety applications became accepted for regular procedures in virtual 
prototyping [15]. In 2005, we started robustness evaluations of FE-based crash analysis for 
passive safety and crashworthiness applications. Here, the estimation of the amount of 
possible numerical scatter became a key feature for the evaluation of numerical robustness. 
Also, the projection and visualization of statistical measurements on FE-meshes became  
key features for the investigation of scatter sources Because of the complexity of the FE-
models, the high amount of non-linearity and the high CPU requirements, we are still 
optimizing all components of the robustness evaluation procedure. Today, we are in the 
productive level of FE-based passive safety application (side crash, head impact) and for 
low speed application (insurance crash). High speed front crash loading still remains a 
challenge. [16]. 



2. Variance-based Robustness Evaluation 

Based on a reference simulation with a deterministic set of input variables, which for 
example corresponds to the mean values of the uncertain variables, a robustness evaluation 
creates a set of possible realizations of the design regarding the naturally given input 
scatter. To generate the sample set, stochastic analysis methodology is used.  
 
Because in the discussed automotive application it is not necessary to account small event 
probabilities, robustness evaluations using variation analysis [14] are the methodology of 
choice. The primary goal of robustness evaluations is the determination of a variation 
range of significant response variables and their evaluation by using definitions of system 
robustness. The secondary goal of robustness evaluations is the identification of 
correlations between input and response scatter as well as a quantification of the thereby 
explainable components of the variation of result variables. 
 
The definition of the uncertainties forms the base  the stochastic generation of the sampling 
set. The characteristic of input scatter is described by using statistical distribution functions 
and it defines the probability space of possible realizations. In practical applications, the 
existing knowledge of scatter is translated into a suitable distribution function. Thereby, 
the bandwidth reaches from detailed data from receiving control of material properties to 
raw estimates of scatter and uncertainties. The software used for the robustness evaluation 
should be able to consider the available knowledge regarding the input information 
completely. This requires that suitable distribution functions (normal distribution, 
truncated normal distribution, log normal distribution, Weibull distribution or uniform 
distribution) can be used and correlations of single scattering input variables or of partially 
correlated stochastic fields can be considered.  
 

 
Figure 1: correlation between yield stress and tensile cut of, flow curves generated from 
input parameter yield stress, tension cut of, limit plastic stain using Ludwick equation 
 
The necessity of this shall be illustrated using the example of material formulation of steel. 
Commonly, the flow curve for forming simulation is described with a set of scattering 



parameters with significant correlation for example between yield stress and tensile 
strength (figure1). Only the consideration of the complete statistical information of  the 
distribution function and variable correlation leads to a realistic flow curve created from a 
“random” choice of the associated scattering parameters in the sampling process.  
 
At this point, it shall be explicitly stated that the reliability of statistical measures of the 
result variables depends on the quality of the input information on scattering input 
variables. Therefore, if only rough assumptions can be made about the input scatter, then 
the statistical measures should only be evaluated as a trend. The estimation of statistical 
measures from a sample of possible realizations is naturally afflicted with an error. To 
keep this error as small as possible, Latin Hypercube Sampling methods are to be 
preferably used when creating samples. Research, regarding the estimation of linear 
correlation coefficients [14], shows that for the same expected statistical error Latin 
Hypercube Samplings are more than ten times more efficient than Monte Carlo samplings. 
Thereby, the required amount of computations for securing a certain confidence interval on 
correlation coefficients depends on the total amount of scattering input variables plus the 
total amount of estimated output variables. In other words, the probability rises that the 
maximum error of single correlation coefficients increases with an increasing amount of 
output variables. Typically, in many engineering disciplines only a small amount of 
important result values is considered when doing robustness evaluations. When doing 
robustness evaluations of forming or crashworthiness simulations, the necessity may arise 
to visualize the spatially correlated statistic measures on the FE-structure and therefore a 
high number of correlation coefficients need to be estimated. Projection methods [11] are 
used to suppress the “noise” of the statistical errors in the estimations of correlation 
measurements and to identify important correlations. 
 
Statistical measures from the histogram form the base for the estimation of response 
variability. Other important measures of variation are coefficient of variation, standard 
deviation, min/max values. In practical applications, the robustness of result values is often 
determined by examining if certain boundaries are exceeded. The boundary values thereby 
are often compared with the min/max values. 
 
If the scatter of output variables is not tolerable, it is searched for apparent correlations 
between the variation of individual input variables and the variation of individual output 
variables. Correlation coefficients, determined from linear and quadratic correlation 
hypothesis, describe a measure of correlation. The correlation coefficients in return form 
the base of measures of determination. Measures of coefficients of determination (CoD) 
are percent wise estimates, which ratio of variation of an output variable to the variation of 
individual input variables can be explained by using the correlation hypothesis. 



3. Requirements for the Successful Integration of Robustness 
Evaluations into the Virtual Product Development Process 

From our experience in the implementation of variance based robustness evaluation in 
automotive applications, following boundary conditions have to be met: 
 
• Numerical model and simulation methods have to posses the ability of prognosis and 

therefore have to be able to show all significant physical phenomena and compare them 
to single experimental data.  

• Simulation processes often need to be improved regarding parametric, automatic 
repeatability and automatic result extraction to be ready for process integration in 
optiSLang.  

• The existing knowledge on input scatter and uncertainties for example in boundary 
conditions, material values or load characteristics are properly to be transferred to an 
appropriate statistical description and have to be integrated in virtual product design as 
significant input information for stochastic analysis. The know-how about the 
uncertainties needs to be continuously collected, updated and validated. 

• A stochastic method has to be used for robustness evaluations which make sure that the 
errors within the estimation of the statistical characteristics are small enough and 
therefore that the results can be used as reliable foundation of a robustness evaluation. 
The stochastic methodology needs to be optimized regarding the necessary number of 
design evaluations resulting in reliable statistic evaluation criteria. 

• The statistical post processing needs to be automated.  
• Standardization of robustness evaluation needs to be established at a care producer as 

well as at a component supplier virtual prototyping process. 
 
Furthermore, one can assume that a consequence introduction of stochastic computation 
methods can be divided into two phases. 
 
Phase 1: Scatter and uncertainties of input variables are estimated from a few 
measurements and empirical values: 
• Transfer of existing knowledge on input scatter and uncertainties of testing conditions 

in distribution functions 
• Inspection of model robustness/stability using coefficients of determination 
• Robustness evaluation of most important load cases, estimation of the variance of 

important performance variables, inspection if limit values are exceeded by the 
variation of the performance variables 

• Extraction of most significant correlations between scattering input variables and 
important performance variables as well as the matching of these mechanisms with 
expectations and knowledge based on the experiments 

 
Within, and respectively as result of, phase 1, the following questions have to be discussed 
and arranged: 



• At which point in time in the virtual development process, the robustness evaluations of 
components, modules or whole vehicles are performed? 

• For which input scatter the assumptions about the scatter have to be verified? 
• How can the scatter of critical performance variables be reduced or relocated? 
• Which exceeding probabilities are tolerable for the performance variables? 
 
Phase 2: sensitive scattering input variables are known and the assumptions about their 
scatter are verified: 
• With secured knowledge about the input scatter, robustness evaluations are performed 

at predefined milestones of the virtual product process. 
• Assuming that all important input scatter was considered close to reality and that the 

numerical models show negligible numerical noise, then the estimate of the scatter of 
important input variables is trustworthy. 

4. Crashworthiness and Passive Safety Applications 

4.1 Numerical Robustness of Crashworthiness and Passive Safety Applications 
 
The inspection of numerical robustness of numerical models of finite–element-based crash 
analysis results from the experience that the variation of numerical parameters of the 
approximation method or the variation of demonstrable insignificant physical parameters 
can lead to large scattering of the result variables or lead to obviously unfeasible results. If 
stochastic analysis computes multiple designs and evaluates their variation statistically, the 
question arises which proportion of the resulting variation can be attributed to problems of 
the approximation method and the numerical modeling respectively. 
In the beginning of robustness evaluations, we performed in parallel “physical” robustness 
evaluations of physically scattering parameters (scattering in reality) and “numerical” 
robustness evaluations regarding variation of numerical parameters. We stated a model as 
numerically robust, if the variation caused by the numerical robustness evaluation was 
small compared to the scatter caused by physical robustness evaluation. But of course, that 
statement was very much depended on the variation interval of numerical parameters and 
we could not repeat numerical robustness evaluations at every point in the physical 
robustness space. Therefore, a process was needed to estimate the quantity of the 
numerical noised within a physical robustness evaluation. At the end, we quantified the 
influence of numerical noise on the result variable by using the coefficients of 
determination [14]. If the measure of determination of the robustness evaluation is high, 
only a small proportion of unexplained variation, which could be caused by numerical 
noise, is left. In order to use the measure of determination of result variables as a 
quantitative measure for the numerical model robustness, the proportion of determination 
of the found correlations has to be estimated with sufficient statistical security. This 
formulates the standards for the sampling method, the number of computations and the 
statistical algorithms for the evaluation of measures of determination. After a positive 
experience of evaluating the influence of numerical noise via measures of determination 
from robustness evaluation, this method is used for the serial production of BMW since 



2006 [15]). From our experience, we selected the role of thumb that for “numerically” 
robust models, measures of determination, considering linear and quadratic correlations 
and after elimination of outliers and clustering of over 80%, should be determined. If the 
measures of determination in practical applications decreased significantly below 80%, it 
was usually indicated that the corresponding result variable possesses a significant amount 
of numerical noise. A reason therefore may be insufficiencies in the result extraction or 
insufficiencies of the numerical models interacting with the approximation methods. After 
repairing the numerical modeling, the measure of determination usually increased up to 
over 80%. 
 
It shall be stated that in theory it is impossible to determine without a doubt the proportion 
of numerical noise. This diagnosis of course excludes systematical errors or the inability to 
actually map significant physical effects in the numerical models. The fundamental 
prognosis ability of the numerical models has to be verified by using experimental data. On 
motivation of aiming at high coefficients of determination for robust designs, the 
correlations between input variation and output variation should be identifiable. These 
correlations also show the possibilities of influencing the result scatter. In order to reduce 
transgression probabilities, it is possible for example to move the mean value of important 
scattering input variables in the linear correlation case or for quadratic correlations to 
reduce input scatter or alternatively to change the transmission behavior between input and 
output scatter.  
 

4.2 Passive Safety Applications 
 
Since the beginning of 2006, computational robustness evaluations using optiSLang [7] are 
a defined milestone of the serial production at the BMW AG, executed for all relevant load 
cases for dimensioning of passive safety systems [15]. The procedure is exemplarily 
introduced for the load case FMVSS 208 (figure 2: front-crash 40 km/h, unbelted, against 
steep wall). The robustness concerning significant evaluation parameters of driver and 
passenger was tested. The model was created and computed in MADYMO. A multi-body-
formulation was used for most parts of the restraint system, tthe dummy and a finite-
element-formulation was used for the airbag. For the robustness evaluation, 200 variants 
were created in optiSLang by using Latin Hypercube Sampling and then they were 
computed. Overall, 27 physical parameters of the multi-body/finite-element-modeling were 
varied and 18 dummy result variables were analyzed in the robustness evaluation. For the 
definition of the scatter, uniform distributions and truncated normal distributions with cut 
offs at 2 or 3 Sigma Level were used. 
 
 



 
Figure 2: Simulation Passenger Safety Load Case FMVSS 208 

 
The following scattering input parameters were considered in robustness evaluation: 

• Scattering of the time to fire the airbag and load-limiter 
• Scattering of the dummy seat position 
• Scattering of mass flow, permeability of the airbag 
• Scattering by the load limiter 
• Scattering of friction between dummy and airbag, airbag and steering wheel as well as 

between dummy and seat 
• Scattering of the impact pulse 
• Scattering of feet space, foot rest, pedal 
 
The robustness of all important dummy injury criteria, like head, chest and pelvis 
accelerations and displacements, HIC-values or neck forces were investigated. Most 
important statistical result of the robustness evaluation were the predicted intervals of 
variation for the scatter of the evaluation parameters (figure 3). Even though no limits were 
exceeded, the scatter of single evaluation parameters is high. Out of the 29 sources of input 
scatter, only 9 input variables show noteworthy correlations to the output variables. As it 
can be seen in the matrix of the linear correlations (figure 4), not for all output parameters 
significant linear correlations (with coefficient of correlation > 0.50) to input scatter could 
be found. This can be an indicator for a high proportion of numerical noise. Therefore, it 
was investigated, if higher measures of determination could be achieved by using quadratic 
correlations and by eliminating non-linearities (outliers or clustering). However, no 
correlations which significantly contribute to the measure of determination, besides linear 
correlations, could be identified. Typically, the determination of the individual result 
variables strongly varies. For example, the maximum force in the femur (figure 5) can be 



explained with a high determination (90% figure 5), while the variation of the HIC-value 
can only be explained with less than 50% (figure 6). 
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Figure 3: Visualization of the Variation Ranges 

 
 



Figure 4: Matrix of Linear Correlations 
 
Therefore, a numerical robustness evaluation was performed by using the reference model 
and 5 to 10% of variation of some numerical parameters. Overall 8 numerical parameters, 
e.g. scaling-factors of the time-steps, the contacts or the “numerical” damping-factors of 
the multi-body/finite-element-modeling, were varied. The scattering of 18 result variables 
was evaluated. 

 
Figure 5: Measure of Determination Femur Force Right 

 

 
Figure 6: Measure of Determination HIC15 

 
The resulting scatter of the evaluation parameters was compared to the scatter of the 
physical robustness evaluation (figure 7). As expected, the numerical noise of variables 



with high coefficients of determination of the physical robustness evaluation, like the 
femur forces, was of negligible proportion. For the evaluation of parameter HIC15  a 
significant scatter occurred as expected, caused by the variation of numerical parameters. 
The large scattering of the chest-values in comparison to the physical robustness evaluation 
are also critical in this model. Although, these evaluation parameters show measures of 
determination of about 80%, in the physical robustness evaluation their scatter caused by 
the variation of numerical parameters is very high. As can be seen in this example, one can 
not assume that the measure of numerical noise related to the variation interval can be 
obtained linearly from the measures of determination.  
If noteworthy variations occur within the numerical robustness evaluations, one can 
assume that the prognosis of scatter of the physical robustness evaluation tends to be too 
high. By checking designs with minimal and maximal performance values, often sources of 
numerical problems can be identified and hints can be given to improve the numerical 
models. 
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Figure 7: Comparison of the Variation Intervals of physical and numerical robustness 

evaluation 
 
The robustness evaluation in the early stage of vehicle development showed that the 
evaluation parameters, including the consideration of input scatterings, lie below target 
limit values. At the same time, it was shown that the hybrid multi-body/finite-element 
model shows a high amount of numerical noise for this load case, which leads to a high 
amount of uncertainty within the prognosis of deterministic results (single values) or of 



stochastic values (variation ranges). Therefore, until the next milestone, the models are 
reworked with the goal of reducing the numerical noise. 
 
Until 2007, more than 100 robustness evaluations were performed at the BMW virtual 
prototyping for passive safety systems. In the third year of the serial use of stochastic 
analysis, the following added value could be obtained concerning the dimensioning and 
increase of the robustness of restraint systems: 
• Development of a better understanding of the transmission mechanisms of input scatter 

on significant performance variables 
• Identification of the significant scattering input parameters and securing of knowledge 

about their scattering 
• Identification of model weaknesses and reduction of numerical noise of significant 

vehicle performance variables. Thereby, increasing the model robustness/stability and 
of the quality of prognosis of crash-test computations 

• Recognizing robustness problems of the restraint systems and in cases of high 
exceeding, of limits with the consequence of re-design of components.  

 

4.3 Crashworthiness Applications 
The robustness of a crash simulation in deterministic analysis is already a task which has to 
be investigated while evaluating the crash test results. To limit problems with scatter of 
performance values resulting from numerical approximations of the crash FE-solvers, often 
quality regulations of modelling, software versions and hardware platforms exist. From the 
viewpoint of stochastic analysis, this evaluation of “numerical noise” needs additional 
quantification in relation to the physical scatter which occurs in reality to the performance 
values. To illustrate that, an injury criteria is scattering in physical test about 50%, then 5% 
scatter coming from numerical approximation solution are usually tolerable. Because we 
assume that the numerical scatter overlays the physical scatter and results in a larger 
variation between min and max, the 5% can be handled with a larger safety distance from 
critical performance values. But of course, if physical scatter and numerical noise have the 
same quantity, the reliability of deterministic or stochastic simulation results are 
questionable. 
 
On request of the FAT working group 27 of the German automobile industry, a front-crash 
load case of the ULSAB car body with a velocity of 14 m/s against a rigid wall (figure 1) 
was evaluated concerning robustness. The goal of the study was to show the possibilities of 
computational robustness evaluations in crashworthiness. LSDYNA was used for FEM 
computing. optiSLang (oS) was used for the robustness evaluation. Evaluation parameters 
of the robustness study were energy, forces and deformation of the main crash boxes as 
well as the relative displacement of the front wall. The input scatters were sheet thickness 
and yield stress of 36 car body parts in the front end, the coefficient of friction as well as 
the test boundary conditions barrier impact speed and barrier impact angle. Normal 
distribution was assumed for the scattering value sheet metal thickness and a lognormal 
distribution for the scattering value tensile strength and yield strength. For the scattering of 



the test boundary conditions, normal distribution and for the coefficient of friction, a 
uniform distribution was used. For the robustness evaluation, 169 variants of the 84 overall 
input scatters were created by using Latin Hypercube Sampling. During the evaluation of 
the variation intervals, significantly too large scatters could be detected concerning nodal 
intrusion values of the front wall (figure 9, left). 
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Figure 9: Histogram of the Intrusion at Node 1114, left: 84 Scattering Inputs, right: 15 
Scattering Inputs 

Figure8: Front-Crash ULSAB Car Body, Side View and Top View 
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minimal and maximal (figure 12) relative displacement at this point showed that the crash 
box sometimes fails during the crash loading and one could have reasoned that the low 
determination of the relative displacement could have been associated to this bifurcation 
problem of the buckling crash box. 
 
 
 
 



 
Figure 11: left: Measure of Determination of the Relative Displacement, right: Standard 

Deviation of the Relative Displacement 
 
 

 
Figure 12: left: Design with Minimal Front Wall Intrusion, right: Design with Maximal 

Front Wall Intrusion 
 
In order to verify, if the robustness of the structure is depending on the amount of 
scattering, the input scatter was decreased. A third robustness evaluation, only concerning 
the input scatter of the test boundary conditions velocity and impact angle, was performed. 
Furthermore, the input scatter of impact velocity and impact angel was reduced by 90% in 
the fourth robustness evaluation. By using the Latin Hypercube Sampling, 36 variants were 
created and computed. As can be seen in table 1, the variation interval of the relative 
displacement is only reduced by 30%, even if the input of the two variables is reduced to 
10% of the original values. This leads to the conclusion that either the connected 
“physical” correlation is relatively independent of the input scatter (and therefore the 
structural response is very instable) or that numerical perturbation causes a significant 
amount of scatter in the response behavior. 



 
 
Intrusion = relative X-
Displacement 
Node 1114 [mm] 

Robustness 1 
84 scattering 
parameters 

Robustness 2 
15 scattering 
parameters 

Robustness 3 
2 scattering 
parameters 

Robustness 4 
2 scattering 

eters 
10% scatter 
param

Mean Value 42.5 44.5 52 53 
Variation Interval 
Max-Min 

89.5 93.7 63 68 

Coefficient of 
Determination  
R2/adjustedR2

61/23 56/47 43/35  

Table 1: Comparison of Statistical Measures  
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eshing of some parts of the crash box and their supporting structure was assumed to be a 

reason for numerical problems. Therefore, the crash box and the supporting structure were 
meshed with a finer mesh size. The robustness analysis was repeated in the 15 dimensional 
subspace of important scattering input variables using 100 Latin Hypercube samples 
(Robustness 5). Because of the finer mesh, the crash mechanism of the crash box (figure 
15/16), the crash box cross section force history (figure 14) and the statistical values (table 
2) of the front wall intrusion (a little bit unexpectedly) changed dramatically. The 
evaluation of the crash box deformation showed much more and frequently failure 
scenarios using the fine mesh (figure 15). 
 

explicit time step integration, was performed. 
amount of numerical noise varying from 20 
variation like robustness evaluations 3 and 4.  
 

Figure 13: Anthill Plot of the Variation of Critical Tim
isplacement of the Node 1114 
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Figure 14: History of resultant crash box cross section forces (left-original mesh, right-fine

Intrusion = relative X- Robustness 2 Robustness 5 Robustness 6 

 
mesh) 

 

Displacement 
Node 1114 [mm] 

15 scattering 
parameters 
vel.=14 m/s 

15 scattering 
parameters 
finer mesh 
vel.=14 m/s 

15 scattering 
parameters 
finer mesh 
vel.=10 m/s 

Mean Value 44.5 22.5 11.6 
Variation Interval 

Max-Min 
93.7 38.1 16.0 

Coefficient of 
Determination 
R2/adjustedR2

56/47 31/19 43/34 

Table 2: Comparison of Statistical Measures 
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d a significant amount of output scatter is 
upposed to result from numerical noise. 
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hereby, this benchmark leexamp  demon

result variables. In practical applications, it w
e
problems by comparing single computation runs and using the projection of statistical 
measures on the FE-structure. The final statement about the ULSAB model in the load case 
front crash is that only about 50% of the scatter in the front wall intrusion can be explained 
with identified correlations to input scatter an
s



 
Figure 15: different failure mechanisms, fine mesh, velocity 14 m/s 

 

 
Figure 16: designs with the highest front wall intrusions, fine mesh, velocity 10 m/s 

 
Figure 17: COD of Intrusion at Node 1114, /sfine mesh, left: 14 m , right: 10 m/s 



5. Summary and Outlook 

A systematic approach was developed for determ the rob  of important 
performance criteria of automotive applications qualitatively and quantitatively. Primary 
result of the robustness evaluation is the estimation of the scatter of important result 
variables. Furthermore e identified and the 

etermination of result variables can be examined. Assumptions concerning activated 

he breakthrough in practical application and the acceptance of stochastic analysis for 

r objective functions [2]. 

The productive use of stochastic analysis in virtual prototyping is associated with high 
requirements on CPU, on the parametric of the models and on the automation of CAE-
process as well as evaluation processes. From those requirements, an allocation of CPU-
power is often the smallest problem. Also the automation of the CAE process is normally 
not a real problem. The definition and the automatic extraction of appropriate response 
values for robustness evaluation are usually one of the main work packages of the engineer 
who is performing the robustness simulation. The automation of post processing of 
robustness evaluation including the offer of a filter of variable importance is one of the 
main topics of the current optiSLang software development and will be available to the 
public soon. Sometimes costly problems occur, if the parametric of the models needs to be 
improved for stochastic simulation. For example for passive safety applications, it became 
very important to reposition automatically the dummy after the perturbation of the design 
and dummy parameters are introduced. Therefore, we developed a multi body dummy 
positioner [7] and are facing the problem of automatic reposition of FE-dummies.  
 
Further research and code development is needed, if spatial correlated phenomena have to 
be taken into account. For example, geometric scatter or the consideration of scatter from 
forming parts in crashworthiness applications will need to extend the stochastic model of 
scatter defin

ining ustness

, sensitive scattering input variables can b
d
nonlinear correlations (clustering/outliers/bifurcation) caused by input scatter can be 
verified. 
 
By using measures of determination, the quantitative influence of numerical noise on the 
variation of result variables can be estimated and thereby, an important contribution to the 
reliability of prognosis and quality of the crash test computations can be given. 
 
T
robustness evaluations was achieved by using linear/quadratic correlations and the 
corresponding measures of determination, by using projection of statistical measures on the 
finite element structure as well as by standardization of robustness evaluation procedure. 
 
The quantitative estimation of the measures of determination and the securing of large 
measures of determination are not only meaningful in robustness evaluations of final 
designs. If crash tests are an integral part of multi-disciplinary optimization tasks [5], the 
measures of determination should also be secured for the result values. Here, the measures 
of determination in the design space of optimization can be used as quality criteria for the 
applicability of the results in constraints o
 

ition to stochastic fields [1].  
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