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Summary 
 
Qualitative and quantitative robustness evaluation of the dispersion of important NVH 
comfort criteria is becoming an important part of the digital car development process. This 
scattering results from unavoidable scatter of design parameters. Using Latin-Hypercube 
Sampling strategies, practical applications show that also large numbers of scattering design 
parameters can be investigated with moderate effort. With correlation analysis and principal 
component analysis, the transfer behaviour of design parameter dispersion to important NVH 
performance criteria is investigated. As a result, the design parameters responsible for the 
main scatter of responses are identified. Furthermore, robustness analysis can be used to 
select the important design parameters for following optimization and if necessary reliability 
analysis. Especially in case of reliability analysis, where commonly only a few stochastic 
variables can be handled efficiently, a robustness evaluation may become a necessary 
preliminary task. 
 
1.0 Introduction 
 
At DaimlerChrysler AG, as a part of the digital car development process, the NVH behaviour 
of new car types is numerically evaluated and optimised by means of complex finite element 
full vehicle models. Herein, vibrations as well as the sound pressure are taken into account 
for acoustic comfort. One of the aims is to reduce the maximum values in the frequency 
responses. Up to now, mainly deterministic approaches have been applied to achieve this 
aim. 
 
In practice, the vehicle design parameters scatter from the nominal values within acceptable 
ranges. If one aims to design a vehicle to be robust, i.e. as insensitive to such scattering as 
possible, the influence of the existing variations has to be taken into account in the car 
design. It is necessary to apply probabilistic calculation methods to quantify the robustness. 
In the following, robustness evaluations by means of stochastic calculations are presented. 
That means, they determine the sensitivity of the system responses regarding unavoidable 
existing scatter of input variables. 
  
If the scattering of the responses due to existing variation of input parameters is high, these 
input parameters have to be taken into account in the optimization of the comfort behavior.  A 
reduction of the input variables’ scatter, a shift of the mean values, or influencing the transfer 
mechanisms could be considered. Certainly, this implies that the sensitive input variables, 
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the transfer behaviour, and the degree of scatter of important response variables are 
thoroughly known. That is why, besides the quantitative evaluation of the scatter of important 
response variables, the identification of the responsible input parameters is of great 
importance. Starting from the important features of the correlation and variation structures, 
the interrelationships within the variables are analysed. The translation of the statistical 
results into comprehensible features of the vehicle model is hereby a necessary prerequisite 
to understand the transfer mechanisms. 
 
It is marked that an increasing virtual prototyping itself augments the need for stochastic 
calculations. If any testing shall be replaced by simulations, the scatter of design parameters 
existing in the testing equipment needs to be considered in the calculation. When the 
calculations are executed only for a few configurations of vehicle states, assured statements 
regarding the robustness of the systems are often impossible to make. On the other hand, 
the increasing application of structural optimization augments the need for robustness 
verification of “optimized” designs, too. Optimization often leads to structures with less and 
less room for tolerances or uncertainties that can lead to considerable robustness problems 
in nonlinear system behavior. Thus, even small variations of input variables can result in 
important changes of the response variables. 
 
2.0 Robustness evaluations  
 
It is the aim of a robustness evaluation to investigate the sensitivity of the system responses 
on scattering input variables. Deterministic as well as statistical measures are used to 
evaluate the robustness. These may be exceeding of limit values or occurrence of system 
instabilities (buckling, resonance and so on) on one hand, and shift of mean values or, last 
but not least, large variational coefficients of the system responses, on the other hand. 
 
Besides the evaluation of single response variables, the interconnections of cause and effect 
can be determined from the correlation structures, i.e. which scattering input variables are 
responsible for which scattering response variables. 
 
Classical sensitivity studies investigate the variation of system responses in respect of the 
variation of input variables by means of calculation of extreme parameter combinations, 
analytical derivatives, or Design of Experiments (DOE). Additionally, the robustness 
evaluation is considering the probability of occurence of the parameter combinations in the 
sensitivity space. Frequent events are weighted higher, impossible or extremely rare events 
(such with a very small probability of occurrence) are not regarded. If necessary, to assure 
the significance of the robustness evaluation for rare events, a great number of samples is 
needed, or methods of reliability analysis [2] have to be used. 
 
Often, robustness evaluations are the beginning of further stochastic calculations. When the 
most important stochastic variables are identified by means of robustness evaluation, 
calculations of probabilities of occurence using stochastic reliability analysis ([2] / 
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FORM/SORM, Importance Sampling, Directional Sampling) can be performed with only a 
few important scattering parameters. 

2.1 Generation of the sample set 
A statistically significant set of possible realizations (samples) is the basis of a robustness 
analysis. 
 

2.2 Stochastic sampling methods 
Methods of stochastic analysis for generating the sample set are based on variants of the 
Monte Carlo simulation. Especially easy to realise is the so called “Plain Monte Carlo” 
method which generates the random numbers following a given distribution function mainly 
unsystematically using a random number generator. However, this method yields relatively 
high statistical uncertainties for few samples and, in large parameter spaces, needs an 
extremely high number of samples to give reliable results. For robustness evaluation, the 
Latin Hypercube Sampling is especially suitable. This method generates the samples in a 
way that the variation widths are met as good as possible while in the same time undesired 
correlations between input variables are avoided. This results in a smaller statistical 
scattering of the results. Of course, for numerically expensive problems, the computing time 
has to be limited. By applying Latin Hypercube Sampling instead of Plain Monte Carlo, the 
number of solver runs can be significantly reduced. 
 

2.3 Recommended number of samples 
For a statistical evaluation of single variables (mean value, histogram, variational coefficient), 
a minimum sample number of ten is recommended, disregarding the number of variables. 
 
For a statistical coverage of the linear correlation structure, in the worst case, one sample 
per matrix element of the triangle matrix is needed. In well posed problems, the correlation 
structure regarding “normal”, non rare events can be approximated with good accuracy using 
a sample number of 2*(input variables + response variables), for Latin Hypercube Sampling. 
Therefore, in the following examples, solely this sampling method has been used. 
 
To reduce the necessary CPU expense for calculating the samples, robustness evaluations 
using response surface approximations have occasionally been proposed. In this case, the 
samples are no longer calculated in the original space but much faster in the approximation 
space. The use of response surface approximations for robustness evaluations is to be 
judged problematical as the response surfaces are not suitable for an appropriate 
reproduction of robustness problems. It is assumed that nonlinear effects, which often lead to 
robustness problems, are often but insufficiently described. Therefore, the use of global 
response surface approximations cannot be recommended for nonlinear problems.  
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2.4 Description of the input variable scattering 
Besides an appropriate sampling method, the characteristics of important scattering 
parameters have to be described with sufficient quality by means of distribution functions. 
Typical distribution functions are e.g. normal distribution, lognormal distribution, Weibull 
distribution, equal distribution, or discrete distribution. The definition of realistic distribution 
functions for all important parameters is a natural prerequisite for the reliability of the results 
of robustness evaluations. 
 
For practical applications, the selection of parameters and the definition of the distribution 
function forms a  serious obstacle. 
 
The selection of the important parameters is a main objective of robustness evaluations. 
Here it is not recommended to prematurely restrict the variable space and the response 
space but to utilize existing CPU resources as completely as possible in order to consider 
rather some variables, load cases, or response variables too much than too less. 
 
To approximate distribution functions, it is often sufficient to „translate“ available knowledge 
of possible scattering into appropriate distribution functions. If the mean values and expected 
maximum scatters are known, e.g. cut-off normal distributions can be approximated. Then, 
the expected maximum scatters are assigned to a probability of occurence (e.g sigma- 
values).  
 
Therefore, in the normal distribution, it is assumed that 

1-sigma values of 68.3 % of all samples  
2-sigma values of 95.4 % of all samples (this corresponds approximately to the 5 % fractile) 
3-sigma values of 99.73 % of all samples 

are not exceeded. 
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Fig.1: normal distribution with sigma values 

 
In this case, the variational coefficients can be approximated by dividing the standard 
deviation by the mean value. For example, 20 % scatter with a probability of 2-sigma yields a 
variational coefficient of 0.2/2 = 0.10. Additionally, the gaussian distributions are generally cut 
off at the sigma-values of the expected maximum scatter. Thus, the resulting histograms of 
the input variables yield slightly smaller variational coefficients. Of course, such 
approximated distribution functions should in the following be verified for the most important 
scattering variables.  
 

2.5 Statistical Evaluation 
Using statistical methods, the samples are investigated regarding correlation and variation 
properties as well as regarding stability of the system response against the scatters of the 
input parameters.  
 

2.5.1 Statistical measures of single input and response variables  
Generally, the histograms, the mean values, and the variational coefficients of the input and 
response variables are calculated. The evaluation of the input variables serves to statistically 
ensure the drawn samples. The distributions should be compared to the nominal 
distributions. The evaluation of mean value and variational coefficient of the response 
variables allows for an assessment of the sensitivity of the system reaction. Hereby, the 
variational coefficient depicts the degree of scatter. Variational coefficients that are much 
larger than those of the associated input variables are to be regarded as conspicuous. In this 
case, it can be assumed that the transmission mechanisms in the system amplify the scatter 
of the input variables. Many engineering tasks aim at rather dissipating systems in which the 
variational coefficients of the response variables are smaller than those of the input 
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variables. The histograms of the single response variables should be investigated regarding 
clustering and bifurcations, which indicate system instabilities. 
Besides the evaluation of single scattering response variables, the most important 
interconnections of input and response variables can be determined from the correlation 
structures. 
 

2.5.2 Correlation structures 
Correlation structure of parameter pairs 
 
It is convenient to display linear correlation coefficients between input and response 
variables in a linear correlation matrix. From this matrix, a possible linear relation between 
the variables can be detected. Here, the correlation coefficients indicate the degree of inter-
connection or dependence of two variables. It is normalized to values between +1 and –1. 
 
Parameter combinations with correlation coefficients ≥ 0.90 show nearly linear correlation 
between input and response variable. Parameter combinations with correlation coefficients ≥ 
0.70 are generally denoted as conspicuous linear correlated. In this study all parameter 
combinations with correlation coefficients ≥ 0.50 there investigated. It can frequently be 
observed that only a small number of input variables have a significant linear correlation (≥ 
0.50) to the response variables. These input variables generally have significant correlations 
to more than one response variables. These are indicated by bands in the correlation matrix. 
 
To each matrix field, anthill plots are associated in pairs. In these plots, all realisations of a 
sample set are displayed in the twodimensional parameter space, ressembling an anthill in 
uncorrelated cases. Anthill plots allow for the visual evaluation of the correlation. 
Additionally, in the anthill plots, clusterings or nonlinear relations between the variation of the 
input variables and of the response variables (which may e.g. be in our example a symptom 
of resonances) can be identified. 
 
Correlation structures of parameter groups 
 
While linear correlation structures show the explicit relation between the variation of two 
variables, the so called Principal Component Analysis (PCA) of the linear correlation 
matrix is used to investigate correlations of higher dimensions, i.e. the correlations of an 
input variable group to a response variable group. The principal component analysis yields 
the dominating correlation modes. It may be compared to a modal analysis, where the first 
eigenvalues dominate the global dynamic structural behaviour. Equivalently, the first 
correlation modes dominate the global highdimensional correlation behaviour. Therefore, 
generally only the first principal components are investigated. Advantageously, the principal 
components are normalized and sorted and displayed in matrix form as dyadic products. This 
matrix form shows the contributions of the variable groups to the scatter of the entire input-
/output data set as well as their linear dependencies. That means that the dependencies in 
the high dimensional spaces are projected to small, manageable dimensions (variable 
groups). 
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3.0 Examples 
 
It shall be shown on a typical finite element full vehicle model of a passenger car, how the 
influence of the input variables’ scatter on important response variables can be measured by 
means of stochastic analyses and evaluated by means of statistical methods. 
 

 
Fig. 2: FE full vehicle model 

 
Herein, mainly the correlation structures, the variation of the response variables as well as 
nonlinearities in the anthill plots are analyzed. It is thus of interest which scattering input 
variables create which scattering of the responses, how strong the scattering of the 
responses is, and nonlinearities in the anthill-plots (the nonlinear transmission behaviour 
between input variables and responses). 
 
The scattering of selected input variables is estimated from the maximum percentage of 
deviation associated to a sigma value of a normal distribution. This deliberately conservative 
estimation is performed as follows: 
- +-30 % scatter about the mean value as 2 sigma value for scalar stiffnesses, 
-  +-20 % scatter about the mean value as 2 sigma value for scalar damping parameters, 
- +-6 % scatter about the mean value as 2 sigma value for sheet thicknesses. 
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3.1 Robustness evaluations of bushings and tire characteristics in the 
suspension with relation to vibrations  
 
Robustness evaluations are performed for 96 scattering characteristics of suspension 
bushings, tires and dampers regarding the peak values of selected frequency bands for the 
important comfort points driver’s seat and steering wheel. All in all, 54 response variables are 
considered. The load cases wheel unbalances, bounce und idle speed are evaluated. A total 
of 377 samples is calculated. 

 
Fig. 3:  Varied parameters in the suspension  
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Fig. 4: Matrix of linear correlation 
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All in all, only 12 significant input variables can be observed in the linear correlation matrix 
(fig. 4). The most significant correlations in the load case bounce are related to the stiffness 
of the front wheels, and in the load case idle speed to the stiffness of the engine mount. 
These two variables have the biggest influence on the scatter in these load cases. The 
results are consistent with hitherto existing knowledge. Furthermore, a quantitative 
assessment of the phenomena is possible. 

 

 

Involved scattering 
input variables 

Interconnection of 
engine mount 
characteristics and tire 
stiffnesses with 
response variables 

Response variables Scattering variables 

Fig. 5: First PCA 
 
 

The advantage of the PCA (fig. 5) compared to the interpretation of the linear correlation 
structure is the connection of the engine mount stiffness and the front wheel stiffness to the 
scatters in the load case idle speed. The correlation coefficients show slight scatter 
amplification effects only for a few response variables. Thus, the suspension mainly 
dampens the transmission of the scattering of mount characteristics to the resulting scatter of 
response variables. 
 
 
 

 
Comfort position driver’s seat 
Load case wheel unbalance 

Frequency [
 

Fig. 6: Visualization of the a
 

In the loadcase wheel unbalance, a nonlinearity 
between the variation of an input variable and a re
Red  Reference design 
Black 377 robustness runs
 

Nonlinearity  
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can be observed (i.e. a nonlinear relation 
sponse variable). If, in reality, the stiffness 
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of the shock absorber bushing decreased below a certain value the response variables 
would rise considerably. These nonlinearities can be identified in the anthill plot (fig. 7) as 
well as in the curve progression of all designs of the comfort point (fig. 6). The physical 
background was found to be a resonance effect of a vehicle vibration. Inspite of this 
nonlinearity, the scatters of the concerned response variables remain moderate, i.e. the 
variational coefficient of the response variables does not increase relative to the variational 
coefficient of the shock absorber bushing, and the maximum values lie below undesired 
amplitudes. Thus, by evaluation of the correlation and variation structures, three important 
input variables could be identified. 
 
 

 

Amplitude of 
comfort variable 

Nonlinearity 

Variation of design variable 
 

Fig. 7: Anthill-plot stiffness of shock absorber bushing versus response 
* rho = correlation coefficient between both variables 

 
 

3.2 Robustness evaluations of bushing stiffnesses in the suspension with 
relation to the sound pressure 
 
Robustness evaluations are performed for 76 scattering bushing stiffness values regarding 
sound pressure levels at four different positions in the passenger compartment. This leads to 
a total of 40 response variables. Two excitations of the engine are investigated. A total of 199 
samples is calculated. 
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Fig. 8: Matrix of linear correlation   
 
As was expected, the resulting correlation or variation structures are mainly determined by 
the stiffnesses of the engine and the gearbox mount (fig. 8). All correlation coefficients of the 
response variables relative to the gearbox mount correspond in the first loadcase 
approximately to 1.0 and thus show the linear relation of the scatters of all response 
variables to the scatter of the gearbox mount (fig. 9). 
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Fig. 9: Anthill-plot stiffness of gearbox mount versus response variable 
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In the second loadcase, the correlation coefficients of the response variables relative to the 
stiffness of the engine mount lie between 0.6 and 0.9 (fig. 10). This shows that additional 
input variables are influencing the scatters of the response variables, besides the relation of 
the scatters of all response variables to the stiffness of the engine mount. 
 

 
 

Fig. 10: Anthill-plot stiffness of engine mount versus response variable 
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Fig. 11: Second PCA 
 
For one loadcase, the first principal component confirms the dominance of the gearbox 
mount. In the other loadcase, the second principal component (fig. 11) shows that the 
stiffness characteristics of the engine mount are dominant. 
All in all, the scatter of the sound pressure levels is moderate and lies below undesired 
amplitudes (fig. 12). By means of the evaluation of the correlation and the variation 
structures, the two dominant input variables could reliably be identified. Thus, these two load 
cases can significantly be influenced by scatter or variation of these few characteristics. 
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Fig. 12: Visualization of the sound pr
 

3.3 Robustness evaluations of sheet thickness
to the sound pressure 
 
Robustness evaluations for 265 selected scattering 
sheets are located in the power transfer path for en
compartment. Sound pressure levels at four comfort
are investigated. This results in a total of 48 respo
excitations of the previous example are investigated. A

Fig. 13: Car body (varied sheets
Red  Reference design 
Black  199 Robustness runs
 z] 

essure level’s scatter 

es of the car body with relation 

sheet thicknesses are performed. The 
gine excitation towards the passenger 
 points in the passenger compartment 
nse variables. Again, the two engine 
 total of 483 samples is calculated.  

 
 coloured white) 



14 

The maximum scatters of the sound pressure levels are of the similar order of magnitude as 
previously in the robustness evaluation of the bushing characteristics. This shows the need 
to consider the influence of the sheet thickness scatter as well. 
 
Unlike in the previous examples, no dominance of any single variables for the correlation and 
variation structures could be observed. The reason for this is the much stronger 
interdependency of the 265 car body sheets. The important increases of response variables 
are thus always influenced by several input variables. Nevertheless, only 12 sheet 
components showed noteworthy correlations to the response variables with correlation 
coefficients ≥ 0.50 (fig. 14). Of these, two were especially noticeable, one located in the door 
area and the other in the rear. 
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Fig. 14: Matrix of linear correlation  

 
 

In fig. 15, the high correlation coefficient of the sheet component in the door shows an almost 
linear correlation to the corresponding response variable. In the anthill plot of the rear sheet 
component versus the correlated response variables in fig. 17, a nonlinearity can be 
observed: Starting from a certain sheet thickness, the amplitude values decrease 
significantly. This nonlinearity causes a visible increase of the scattering in the curve 
progression of all designs of the comfort point (fig. 16). 
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Fig. 15: Anthill-plot door sheet component versus a response variable 
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Variation of design variable 
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Fig. 17: Anthill-plot rear sheet component versus a resp
 

3.4 Summary of all examples 
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spaces can be executed. Please note that the optimization parameter spaces (i.e. all input 
values that constructively can be varied) and the parameter spaces of the robustness 
evaluation (all scattering parameters such as input variables, loads, boundary conditions) do 
have intersections but are not identical in realistic structures. A simultaneous treatment of 
both the optimization task and the reliability problem generally overstrains the computational 
resources. Therefore, an iterative procedure with optimization considering constraints of 
reliability/robustness and robustness analysis is recommendable [5]. In case of considerable 
variations of the parameters to optimize, it is recommendable to execute a final robustness 
evaluation of the optimized structure after the completed optimization. 
 
If exceedances of allowable values are detected by the robustness evaluations, the related 
probabilities can be determined from the histograms. Here, the sampling of the robustness 
evaluation yields reliable statements up to probabilities of occurence of about 5 to 10 %, 
depending on the number of executed finite element simulations. If smaller probabilities of 
occurence shall be calculated, reliability analysis methods for small parameter spaces [2] 
should be used. 
 
The presented frequency response analyses have been executed with the finite element 
program NASTRAN. All described stochastic and statistical algorithms are implemented 
within the software package Slang [2]. The robustness evaluations have been performed with 
the program OptiSLang [1]. 
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