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Kurzfassung 

In diesem Artikel wird der robuste Entwurf eines elektromagnetischen Aktuatorsystems 
vergestellt. Einige Prozessparameter, wie der magnetische Fluss und die 
Federsteifigkeit werden innerhalb einer Optimierungschleife angepasst. Zusätzlich zur 
Reduktion der deterministischen Zykluszeit wird die Zuverlässigkeit des Systems 
betrachtet. Unter Berücksichtigung zusätzlicher Unsicherheiten in den mechanischen 
und elektromagnetischen Eigenschaften wird der erfolgreiche Prägevorgang als 
Nebenbedingung eingeführt. Unter Anwendung effizienter Methoden zur 
Zuverlässigkeitsanalyse wird eine schnelle gekoppelte Robust Design Optimierung 
ermöglicht. 

 

Abstract 

In this paper a robust design of an electromagnetic actuator system is presented, where 
some process parameters such as magnetic stroke and spring stiffness are modified 
within an optimization procedure. Additionally to reduction of the deterministic cycle 
time, the reliability of the cycle is considered. Based on additional random uncertainties 
in the mechanical and electromagnetical properties, the success probability of the 
simulated cycle is used as optimization constraint. With help of sophisticated reliability 
methods a fast and efficient Robust Deisgn Optimization is enabled. 

 

Robust Design 
 
Due to target-oriented, automatic optimization of virtual products new design 
possibilities are explored. However, highly optimized designs lead to high imperfection 
sensitivities and tend to loose robustness. Often the deterministic optimum is pushed to 
the boundaries of the feasible design space. As a result the optimized design, which 
was found by assuming deterministic model properties, may not be realizable in a 
production process. For this reason, it is necessary to investigate, how the optimized 
design is affected by scattering model input variables, which could be e.g. geometry and 
material parameters, boundary conditions and loads. The scattering inputs can be 
represented by means of scalar random variables having a certain dependence 
between each other. Random variables have the advantage compared to other 



uncertainty models, that efficient methods of the well-developed probability theory can 
be applied.  
A robust design may be characterized intuitively in that way, that its performance is 
largely unaffected by random perturbations of the model inputs. A possible measure is 
the variance indicator, where the relative variations of the critical model responses are 
compared to the relative variation of the input variables. If certain model responses are 
limited with respect to an undesired performance, the safety margin can be quantified 
as the interval between the mean value of the model response and the limit. 
Alternatively the probability that a certain limit is exceeded can be quantified and proven 
to be less than an acceptable value. This probability indicator can be evaluated by the 
probability-based robustness analysis, often called reliability analysis. 
 
 
Reliability Analysis 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Limit state function and multivariate distribution analyzed in the reliability 
analysis and relation to the failure probability. 

 
In the reliability analysis the integral of the failure domain is evaluated explicitly, as 
shown in Figure 1. This requires in the case of classical integration methods, such as 
Monte Carlo Simulation, a large number of simulation runs to estimate small failure 
probabilities. In our study we compare different methods, such as First Order Reliability 
Method (FORM) [1], directional sampling [2] and a recently developed adaptive 
response surface method [3] with respect to their efficiency. Further details about these 
methods can be found in [4]. 
 
Robust design optimization 
 
In robust design optimization, the optimization task is formulated under the 
consideration of uncertainties. For this purpose we model the uncertainties with scalar 
random variables with a given distribution type and correlations between each other. In 
the RDO framework the optimization variables itself (e.g. geometry parameters of a 
structure) and even additional variables (e.g. material properties) may be assumed as 
random. This may result in pure optimization, pure stochastic and mixed optimization-



stochastic variables. Additionally to the deterministic objective and constraint functions, 
the robustness of a design is considered within the RDO procedure. 
Generally two different approaches are possible for this purpose: the fully coupled 
robust design optimization, where the robustness or reliability constraints are evaluated 
for every optimization design. Alternatively, the iterative robust design optimization 
reduces the numerical effort by introduction safety factors to the constraints and solving 
the RDO task by a deterministic optimization. Both procedures are explained and 
compared in [5].  
 
The electromagnetic actuator system 
 

 
 

Figure 2: Investigated electromagnetic actuator system. 
 
The investigated system in this paper is an electromagnetic actuator used to drive a 
Braille printer [6]. In Figure 2 the corresponding Simulation X model is shown. As 
optimization and random variables the initial needle displacement, the spring stiffness, 
the diameter of magnetic armature and the magnetic stroke are considered. As 
optimization goal the cycle time should be minimized under the consideration of a 
successful embossing. In a deterministic optimization the obtained optimum is located 
very close to the constraint condition. Since the constraint function is one for successful 
embossing and smaller one, if the needle does not emboss the paper, this function is 
dominated by a strong kink, as shown in Figure 3. Therefore, it is not possible to 
estimate the safety margin by using a robustness analysis with a small number of 
samples. For the reason an iterative robust design optimization is not applicable and a 
fully coupled reliability-based robust design optimization is performed. In this analysis 
the failure probability is evaluated for each optimization design. As safety requirement, a 
99.9% embossing rate for the optimal design is requested.  

 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Deterministic constraint function (left) and objective function (right) of the 
electromagnetic actuator system. 

 
Step 1: Robustness and reliability analysis at the initial reference design 
 
In a first step the robustness and reliability is evaluated at the reference design, where 
spring stiffness is 50 N/mm, the initial needle displacement is 0.15 mm, the diameter is 
15 mm and the magnetic stroke is 0.002 s. The variation is assumed to be 10% for 
needle displacement, stiffness and stroke and 5% for the diameter. All inputs are 
assumed to be normally distributed. 
 
The robustness analysis is performed using 100 Latin Hypercube designs with the 
defined reference as mean and the given variation of the input variables. All 100 
designs lead to a successful embossing as shown in Figure 4. The cycle time varies 
between 3.3 and 4.4 ms. 
Furthermore a reliability analysis is performed at the reference design. First the classical 
FORM algorithm was investigated, which does not work due to the missing gradients of 
the embossing at the reference design. Therefore, an evolutionary algorithm is used to 
search for the most probable point. For comparison directional and adaptive sampling is 
applied. The results are given in table 1. The table indicates similar results for all three 
methods. The accuracy of the adaptive sampling seems to be the best, but the FORM 
approach does not enable an error estimation. However, all three methods indicate a 
failure probability of approximately 10-8, which is much less as the required probability of 
10-3 (equivalent to a success rate of 99.9%). 
 



                   
 

Figure 4: Statistical data of the embossing (left) and the cycle time (right)  
at the initial reference design 

 
 
Method FORM with 

Evolutionary Algorithms 
Directional sampling Adaptive sampling 

Probability of failure 1.6 * 10-8 2.6 * 10-8 1.2 * 10-8 
Estimation error - 1.3 * 10-8 0.3 * 10-8 
Reliability index 5.53 5.44 5.57 
Number of model runs 500 607 900 
 

Table 1: Estimated probabilities of failure at the initial reference design 
 
 
Step 2: Deterministic optimization and robustness analysis at the optimal design 
 
In a second step, a deterministic optimization is performed. Within the parameter ranges 
given in table 2, the minimum cycle time is searched while a successful embossing is 
required as constraint. Before performing the optimization, a sensitivity analysis is 
evaluated in the design parameter ranges. With help of the Metamodel of Optimal 
Prognosis [7] the functional dependence between input parameters and reponses is be 
assessed quantitatively and qualitatively based on 100 Latin Hypercube samples within 
the deterministic ranges. Figure 5 indicates the results of the sensitivity analysis. The 
functional dependence between the design parameters and the responses seem to be 
almost monotonic and clearly interpretable. As important variables the stiffness, the 
stroke and the diameter have been identified. The initial needle displacement seems to 
be minor important. 
 
 



              
 

           
 

Figure 5: Functional dependence and sensitivity indices of the embossing (left) and the 
cycle time (right) in the deterministic design space 

 
Based on the results of the sensitivity analysis different optimization strategies are 
investigated: a gradient-based method (NLPQL), the Simplex Nelder Mead method, 
both using the best design of the sensitivity analysis as start design, an Adaptive 
Response Surface (ARSM) and a global Particle Swarm Optimization (PSO), both 
starting globally. Details about the optimization methods can be found in the optiSLang 
documentation [8]. In table 2 the results of the different methods are given. The table 
indicates that although the methods find similar optimal cycle time values, the design 
parameter value vary significantly. This is caused by a value of the objective function 
around the optimum with very small gradients. In such a situation, methods without 
gradient use (explicitly or implicitly), such as the simplex method and PSO, are more 
accurate. The minimum cycle time is obtained by the simplex method, which is a 
reduction of the reference value of 27%. 
 
 
 



 
 
 Range Start NLPQL Simplex ARSM PSO 
Spring stiffness 0.5 – 100 

N/mm 
50.0 35.10 39.96 27.37 47.66 

Needle 
displacement 

0.15 – 2.0 mm 0.15 0.15 0.15 0.15 0.15 

Magnetic stroke 0.5 – 3.0 ms 2.0 1.12 1.21 1.24 1.23 
Diameter 5.0 – 15.0 mm 15.0 11.08 11.16 10.52 11.78 
Cycle time  3.13 ms 2.293 ms 2.288 ms 2.324 ms 2.292 
Number of model 
runs 

  125 (+100) 159 (+100) 210 400 

 
Table 2: Deterministic optimization: design parameter ranges and results of the different 

optimizers 
 
At the final optimum of the simplex optimizer, a robustness analysis is performed using 
again 10% variation for stiffness, needle displacement and stroke and 5% variation for 
the diameter. Figure 6 shows the obtained results: a successful embossing is reached in 
only 67% of the samples, which is much smaller as the required 99,9%. Thus, the 
deterministic optimum does not fulfill the robustness requirement. 
 

         
 

Figure 6: Statistical data of the embossing (left) and the cycle time (right)  
at the deterministic optimum 

 
 
 
 



Step 3: Coupled reliability based robust design optimization 
 
In this step a robust design optimization is performed using a deterministic optimization 
procedure by considering reliability constraints. The optimizer evaluates at each nominal 
design the deterministic cycle time and the probability to fail in the embossing. 
As optimizer the simplex algorithm is applied and as reliability method the adaptive 
sampling strategy is used. In order to reduce the huge numerical effort, the adaptive 
sampling is performed with 2iterations, each having only 50 samples. This does not lead 
to a very accurate estimate of the failure probability, thus a final proof at the obtained 
optimum is necessary. During the optimization procedure a reliability index equal or 
larger 3 is used as constraint condition. 
 

 
 

Figure 7: Convergence of the fully coupled robust design optimization 
 
In Figure 7 the observed convergence of the optimizer is shown. After only 31 designs, 
the optimum is found. The optimum design has a cycle time of 2.52 ms, which is 0.23 
ms larger as the deterministic optimum, but 19.5% better than the start design. The 
rough reliability estimate by the adaptive sampling method indicated a probability of 
failure of 2.6*10-4 which corresponds to a reliability index of 3.47. However, due to the 
small number of samples in the reliability method, a more accurate proof is necessary. 
 
Step 4: Final reliability proof at the robust optimum 
 
In order to verify the final optimum, again different reliability methods are performed: 
A FORM method based on evolutionary algorithm and simplex optimizer, the directional 
sampling method and adaptive sampling. The results are given in table 3. The table 
indicate, that the estimated failure probability is approximately 0.2 % which corresponds 
to a embossing success rate of 99.8%, which is close to the initial requirement. 
 
The presented results are obtained by using optiSLang, a software package for 
optimization and robust design evaluation, which enables the representation of many 
random variable distributions and even interactions between these random variables. 
 



Method FORM with 
EA+Simplex 

Directional sampling Adaptive sampling 

Probability of failure 1.3 * 10-3 2.0 * 10-3 1.9 * 10-3 
Estimation error - 1.0 * 10-3 0.6 * 10-3 
Reliability index 3.02 2.88 2.90 
Number of model runs 770 500 300 
 

Table 3: Estimated probabilities of failure at the final robust design 
 
 
Conclusions 
 
In this paper an optimization of an electro-magnetic  actuator system under 
consideration of reliability constraints is performed. Since the limit state function, which 
is the embossing, is a constant function for successful embossing, an approximation of 
the most probable failure point based on the results around the mean is not possible. 
Therefore, classical FORM and variance based robustness analysis (which is equivalent 
to First Order Second Moment methods) did not give useful results. Due to this fact, 
more sophisticated reliability methods have applied. With help of a fully coupled 
reliability based design optimization a robust design was found, having a large success 
rate close to the required value. 
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