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Plan of Presentation

Description of the model
Brute force Monte Carlo benchmarking
Quality assessment of estimators by resampling and Bayes

Cost efficient reliability analysis
Subset simulation
Asymptotic sampling
Sensitivity based importance sampling

Optimization and worst case scenarios
Genetic algorithm
Nelder-Mead with constraints
optiSLang optimization

Structural uncertainties – random field modelling
Turning the random field on
Observing change of output distribution
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Description of the Model

Small launcher model:

FE-model, ABAQUS, 18.000 elements, shell
elements and beam elements for stiffeners.
91.000 DoF.

35 Input variables x: E-moduli, yield stresses;
pressure-, temperature-, booster loads – applied
stepwise; forces due to boundary imperfections.

Input statistics: Uniform distributions with spread
±15% around nominal value.
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Failure Criterion

Output: Failure probability

pf = P(Φ(x) > 1)

defined by the the critical demand-to-capacity ratio (CDCR)

Φ(x) = max

{
PEEQ(x)

0.07
,
SP(x)

180
,

0.001

EV (x)

}
,

combining 3 failure criteria (plastification of metallic part, rupture
of composite part, buckling).

Benchmarking by brute force Monte Carlo, N = 5000, parallelized,
performed on the HPC computer LEO III in Innsbruck.

Result of benchmark simulation:

pf = 0.0116.
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Low Cost Performance Analysis

How good is the Monte Carlo estimator for pf?

First analysis: Bootstrap resampling. Drawing from the original
sample of size N = 5000 with replacement, B = 10000 samples
with the same (empirical) distribution and corresponding pf are
obtained. Result: an estimate of the statistical variation of pf .

Second analysis: Bayesian posterior density for pf , given the data
constituted by the original sample. The MC-sample can be viewed
as the outcome of a Bernoulli experiment (failed/not failed). The
posterior density is an N-fold product of beta distributions.

Variation of pf

around its estimated

value of 0.0116.
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Reliability Analysis: Faster Methods (1)

Subset Simulation:

P(F ) = P(Fm
∣∣Fm−1)P(Fm−1

∣∣Fm−2) . . .P(F1
∣∣F0)P(F0)

where F = Fm and F0 is the starting region.

F = {x : Φ(x) > 1}, Fi = {x : Φ(x) > αi}

and αi is chosen so that P(Fi
∣∣Fi−1) = 0.2, say.

P(F0) is estimated by brute Monte Carlo, P(Fi
∣∣Fi−1) by starting

short Markov chains at the worst 20% of obtained points.

Asymptotic sampling: pf = Φ(−β), β = Φ−1(1− pf ).
Transformation to normal probability space with σ = 1. Instead of
simulating β = β(1), one simulates β(v) for smaller values of
v = 1/σ, which is easy, and sets up a regression

β(v) = A + Bv + C/v + . . .

Best model chosen by data analysis.
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Reliability Analysis: Faster Methods (2)

Importance sampling:

pf =

∫
1F (x)ρ(x)dx =

∫
1F (x)

ρ(x)

g(x)
g(x)dx.

The density g(x) is shifted into a neighborhood of the failure
region.

MC simulation with a sample distributed according to g(x).

How to choose g(x)? Start with cheap sensitivity analysis.

Employing all tricks of the trade (Latin hypercube sampling,
correlation control), a sample size around 100 – 200 suffices.

Determine the most relevant input parameters.

Distort their distribution according to the degree of correlation
with the output (assuming monotone dependence).
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Reliability Analysis: Comparison

MC SS AS IS

Sample Size 5000 780 800 780

Estimated pf 0.0116 0.0155 0.0093 0.0084

Bootstrap 95%-CI 0.0088 − 0.0146 0.0104 − 0.0217 0.0028 − 0.0219 0.0055 − 0.0118

Bayesian 95%-CI 0.0090 − 0.0150 0.0112 − 0.0225

Subset simulation: Bootstrap and
Bayesian estimate of the variability
of pf .

Asymptotic sampling: Bootstrap
regression and corresponding
distribution of β.

Oberguggenberger (University of Innsbruck) WOST 2013 Weimar, November 21, 2013 8 / 15



Reliability Analysis: Comparison

MC SS AS IS

Sample Size 5000 780 800 780

Estimated pf 0.0116 0.0155 0.0093 0.0084

Bootstrap 95%-CI 0.0088 − 0.0146 0.0104 − 0.0217 0.0028 − 0.0219 0.0055 − 0.0118

Bayesian 95%-CI 0.0090 − 0.0150 0.0112 − 0.0225

Subset simulation: Bootstrap and
Bayesian estimate of the variability
of pf .

Asymptotic sampling: Bootstrap
regression and corresponding
distribution of β.

Oberguggenberger (University of Innsbruck) WOST 2013 Weimar, November 21, 2013 8 / 15



Optimization

Derivative-free methods:

Genetic algorithms. An initial set of points is improved (with
respect to the value of the objective function) by randomly
changing coordinates and interchanging components. When a
local optimum has been identified, a restart is undertaken to
cover other regions of the search space.

Particle swarms. Similar to genetic algorithms, but the initial
set of points is steered towards an optimum by means of
velocity fields.

Nelder-Mead downhill simplex algorithm. An initial simplex of
points is distorted and moved by reflection, expansion,
contraction, reduction. Probabilistic restart.

In all cases, the implementation of bounds (on input) and
constraints (on output) requires additional rules.

Oberguggenberger (University of Innsbruck) WOST 2013 Weimar, November 21, 2013 9 / 15

NelderMead.mp4


Optimization

Derivative-free methods:

Genetic algorithms. An initial set of points is improved (with
respect to the value of the objective function) by randomly
changing coordinates and interchanging components. When a
local optimum has been identified, a restart is undertaken to
cover other regions of the search space.

Particle swarms. Similar to genetic algorithms, but the initial
set of points is steered towards an optimum by means of
velocity fields.

Nelder-Mead downhill simplex algorithm. An initial simplex of
points is distorted and moved by reflection, expansion,
contraction, reduction. Probabilistic restart.

In all cases, the implementation of bounds (on input) and
constraints (on output) requires additional rules.

Oberguggenberger (University of Innsbruck) WOST 2013 Weimar, November 21, 2013 9 / 15

NelderMead.mp4


Optimization

Derivative-free methods:

Genetic algorithms. An initial set of points is improved (with
respect to the value of the objective function) by randomly
changing coordinates and interchanging components. When a
local optimum has been identified, a restart is undertaken to
cover other regions of the search space.

Particle swarms. Similar to genetic algorithms, but the initial
set of points is steered towards an optimum by means of
velocity fields.

Nelder-Mead downhill simplex algorithm. An initial simplex of
points is distorted and moved by reflection, expansion,
contraction, reduction. Probabilistic restart.

In all cases, the implementation of bounds (on input) and
constraints (on output) requires additional rules.

Oberguggenberger (University of Innsbruck) WOST 2013 Weimar, November 21, 2013 9 / 15

NelderMead.mp4


Optimization

Derivative-free methods:

Genetic algorithms. An initial set of points is improved (with
respect to the value of the objective function) by randomly
changing coordinates and interchanging components. When a
local optimum has been identified, a restart is undertaken to
cover other regions of the search space.

Particle swarms. Similar to genetic algorithms, but the initial
set of points is steered towards an optimum by means of
velocity fields.

Nelder-Mead downhill simplex algorithm. An initial simplex of
points is distorted and moved by reflection, expansion,
contraction, reduction. Probabilistic restart.

In all cases, the implementation of bounds (on input) and
constraints (on output) requires additional rules.

Oberguggenberger (University of Innsbruck) WOST 2013 Weimar, November 21, 2013 9 / 15

NelderMead.mp4


Optimization

Derivative-free methods:

Genetic algorithms. An initial set of points is improved (with
respect to the value of the objective function) by randomly
changing coordinates and interchanging components. When a
local optimum has been identified, a restart is undertaken to
cover other regions of the search space.

Particle swarms. Similar to genetic algorithms, but the initial
set of points is steered towards an optimum by means of
velocity fields.

Nelder-Mead downhill simplex algorithm. An initial simplex of
points is distorted and moved by reflection, expansion,
contraction, reduction. Probabilistic restart.

In all cases, the implementation of bounds (on input) and
constraints (on output) requires additional rules.

Oberguggenberger (University of Innsbruck) WOST 2013 Weimar, November 21, 2013 9 / 15

NelderMead.mp4


Worst Case Scenarios

First application: In reliability analysis, the location of the failure
region and the most critical points are of interest.

All algorithms compute clouds
of points that can be ordered
according to their Φ-values
and used for further analysis.

Subset Simulation (top) and
genetic algorithm (bottom),
pressure load sphere 2 versus
yield stress cylinder 3.

Legend

yellow 0 − 0.9543

green 0.9544 − 0.9885

blue 0.9886 − 1

red > 1
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Mass Optimization under Constraint

GRADE algorithm with CERAF restart strategy (CTU Prague)

Nelder-Mead with probabilistic restart (in-house)

Genetic algorithm optiSLang

Particle swarm algorithm optiSLang
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Truss Structure – Comparison of Results

Objective value: MASS
Constraint: PEEQ = 0

Bounds:

S1 S2 R E1 E2 E3

10 10 10 220000 220000 220000

3000 3000 1000 240001 240001 240001

Function calls Mass S1 S2 R E1 E2 E3

GA - GRADE 1620 6.98346 828.30 10.00 63.78 240001 222901 220000

Nelder-Mead 349 6.80596 799.27 10.11 62.95 223330 238207 228351

GA - optiSLang 1528 6.85535 817.40 10.00 63.07 229650 220620 220960

PS - optiSLang 1996 6.08253 730.28 10.00 59.26 223280 229500 224290
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Random Field Modelling (1)

A random field on the small launcher model (material properties)

Determination of field parameters from empirical data
spectral decomposition of covariance matrix
Monte Carlo simulation of the random field (Karhunen-Loève)
repeated FE-calculation of structural response

Typical autocovariance function

COV(XP ,XQ) = σ2 exp(−dist1(P,Q)/`1) exp(−dist2(P,Q)/`2)
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Random Field Modelling (2)

Exemplary application:

Loads as random variables as before

Material properties as random fields

Question: Change of output with/without random field

Example – change of distribution of load proportionality factor LPF
without random field (left) and with random field (right):
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Thank you for your attention!


