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Abstract

In order to meet the requirements of rising energy demand, a goal in the design
process of modern steam turbines is to achieve high efficiencies. A large gain in
efficiency is expected from the optimization of the last stage and the following diffuser
of a low pressure turbine (LP). The aim of such optimization is to minimize the
losses due to separations or a inefficient blade or diffuser design. In the usual
design process, as it is state of the art in the industry, the last stage of the LP and
the diffuser is sequentially designed and optimized. The potential physical coupling
effects are not considered. Therefore the aim of this paper is to perform both, a
sequential and coupled optimization of a low pressure steam turbine followed by an
axial radial diffuser and after that, the comparison of the results. Apart from the
flow simulation there is also a mechanical and modal analysis made in order to
satisfy the constraints regarding the natural frequencies and stresses. Thereby the
use of a meta-models is provided, which allows very time efficient three dimensional
(3D) calculations to account for all flow field effects.

Keywords: Coupled and sequential optimization, low pressure steam turbine, Last stage,
axial radial diffuser, metamodel, Latin hypercube sampling, adaptive response surface
method, evolutionary optimization algorithm, sensitive parameters, Efficiency, Pressure
recovery, Performance
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Nomenclature Subscripts

ṁ Mass flow of the stage inlet [kg/s] init Initial
ηst Total isentropic stage efficiency pre Previous
P/ṁin Specific performance [Jkg/s] fin Final
cpr Pressure recovery seq Sequential
σ Stress cp Coupled
γ Safety factor rot Rotor
f Eigenfrequency [s−1] i Input
AR Diffuser outlet area/inlet area ith 1-3th Eigenfrequency
d Parameter o Output
O Optimization eqv von Mises equivalent stress
h height r Radial stress
t thickness in Inlet
l, Θ length out Outlet
P Pressure TE Trailing edge
α, β, λ, ζ Angle LE Leading edge
T Temperature STAG Stagger angle
COP Coefficient of optimal prognosis ** Span at 0, 25, 50, 75, 100 %
κ Isentropic exponent dif Diffusor
M Torque 0 Stator inlet

1 Rotor outlet/ Diffuser inlet
2 Diffuser outlet

1 INTRODUCTION
The energy supply now and in the future is one of the most important issues of our
time. It is foreseeable that in the future the energy consumption continues to rise and
the supply of coal and other fossil fuels worldwide will decrease. In order to meet future
energy needs, in addition to the development of new renewable energy sources, the existing
methods for energy production must be as efficient as possible. Further development and
the use of modern technologies in power plants, as well as new computational method
for the optimization of turbo machinery, are options for a more economical use of the
existing energy resources. But not only increasing the efficiency is one of the key criteria
in today’s turbo machinery development, in the case of electricity generation mainly the
reduced emission of pollutants and thus the preservation of the environment, represents
an increasingly significant role.

Time efficient optimization methods, as presented here, and the increasing power of
computers, make it possible to increase efficiency, which makes it possible to produce more
energy under the same amount of resources and thus a reduction of pollution compared
to a less efficient production.

In this work, optimizing the last stage of a low pressure steam turbine followed by
a diffuser, provides a great potential for improving the efficiency of the cold end of the
turbine, since more than 30% of the power of a modern LP steam turbine will be produced
in the last two stages. The resulting losses may be reduced only to a lesser extent by a heat
recovery. Therefore the optimization of the outflow and the conversion of kinetic energy
into potential energy by improving the pressure recovery in the diffuser, can decrease the
enthalpy at the outlet of the diffuser and so increase the enthalpy difference and thus also
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significantly improve the system efficiency.
A decisive factor for optimizing this components is the joint consideration of both

the last stage and the diffuser. In most cases, the respective components are designed
and optimized separately and therefore the full potential for optimization is left aside.
Therefore, it will be presented in this work, first a sequential optimization of the last stage
followed by a optimization of the diffuser. In comparison there will be made a coupled
optimization of both components to show the differences between these two methods.
As a basis for this work, their is a self-made design of a last stage and the diffuser
based on information of the industry and literature. In the simulation, next to the flow
simulation, there is performed a mechanical and dynamical analysis of the stresses and
natural frequencies. The calculations are performed using ANSYS Workbench software.
In the first step of optimization, using the optimization software optiSLang , the blades are
optimized for fixed diffuser parameters. In the second step, the optimized blades are also
fixed and the diffuser is optimized. In the final step, a coupled optimization of diffuser
and blades is carried out, starting from the initial design. In the coupled optimization a
large number of parameters for both components (51 overall) is involved to also represent
the opportunities to solve any large optimization problems efficiently. By the individual
optimizations, the sensitive parameters and correlations for the respective outputs and
components are also noted.

In the field of optimization of the coupled last turbine stage and the subsequent dif-
fuser, there are already some publications. In most cases, however, the calculations are
carried out using 2D codes in order to avoid the high computational cost of 3D simula-
tion. With the constant improvement of computer power and more efficient numerical
method, it is worthwhile to work on this topic in the 3D area more and more. Overall, all
these publications show a clear improvement over the outcome designs that are previously
developed sequential.

1.1 Application to aerodynamic optimization
In comparative studies on the application of the deterministic optimization for aerody-
namic optimization Müller-Töws (2000); Sasaki et al. (2001); Shahpar (2000) usually
stochastic programming algorithms or response surface methods Pierret and Van den
Braembussche (1999) are used in turbo machinery design, for example in the develop-
ment of engine components, such as at Vaidyanathan et al. (2000). In Shyy et al. (2001)
a comprehensive overview is represented.

An example of an applied aerodynamic deterministic optimization using a genetic
algorithm is published in Trigg et al. (1997) and the optimized design of transonic profiles
also using genetic algorithms is given in Oyama (2000). Another very comprehensive
study of the use of the combination of genetic algorithms and neural networks for two
dimensional aerodynamic optimization of profiles is presented in Dennis et al. (1999), who
combined a genetic algorithm with an gradient based optimization method.

1.2 Application to coupled optimization of the last stage and
successive diffuser

One of the first works in this area was published in Willinger (1997) in 1997. The aim of
this work was not to optimize the coupled components, but in general, to determine the
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interaction of both components. In particular, the radial gap between rotor and casing
was varied, while they observed improvements in the pressure recovery in the diffuser.
With increasing the radial gap, the pressure recovery was improved, but with greater flow
losses. These losses could not be outweighed by the greater pressure recovery. By increas-
ing the marginal gap, the gap current experiences more energy which allows for certain
construction of the diffuser to avoid separations. In particular this has the advantage
that shorter lengths of the diffuser are possible, as well as greater diffuser opening ratio.
Similarly, in this work, the proposal will be given a numerical optimization to determine
further interaction phenomena and to integrate them into the optimization. Also Jung
(2000) initially dealt only with the phenomena that occur in a coupled calculation and
developed in his work an efficient numerical method for the calculation of the coupled
model. An optimization is presented for example in Kreitmeier and Greim (2003) using
a low pressure turbine stage and a subsequent axial radial diffuser. Here, the diffuser
has been optimized under fixed blade geometry. The optimization was carried out using
a numerical method and in a second sample using an experimental optimization. Both
methods achieved significantly better performance than comparable standard designs.
The best result came from a 3 channel diffuser. Further work on this area was performed
by Fan et al. (2007) in a coupled optimization. It turned out that the inhomogeneous
flow of the output stage are one of the main reasons for separations in the diffuser. By
optimizing the coupled system, also a much better overall performance was achieved. In
Stüer and Musch (2008) a coupled optimization is also carried out with the focus on the
influences of the tip jet, the influence of the flow on the diffuser is investigated with the
background of the CO2 reduction. One result of this work was the development of an ef-
ficient method for determining the release tilt of the diffuser, which makes, coupled with
an optimizer, very quickly a streamlined design of a diffuser possible. One of the probably
most recent work in this area represents Musch et al. (2013). In this work, both last stage
and diffuser, were optimized using a “covariance matrix adaptation”. To reduce the high
computational complexity of this optimization a 2D through-flow code called ”‘SLEQ”’
by Denton (1978) was first used and then were the results validated in a further step using
a 3D simulation. Result of this work was that a significantly greater potential exists for
a coupled optimization. The physical explanation for this greater potential lays in the
fact, that the pressure distribution in the outlet of the last stage is the inlet pressure
distribution of the diffuser. Therefore, it was also recognized that diffusers, which are
based on standard correlations, always lead to a not fully utilized overall performance. A
similar work can be found in Burton et al. (2012).

2 Numerical Model and Simulation
For this work a geometry of the last stage and the diffuser was made based on information
from industry. The first developed model was improved by hands, until it was nearly
comprehensive with machines in the industry, so that the optimization is also in an area
of practical importance. Therefore the guidelines from Wilson and Korakianitis (1998)
were used to get a first acceptable model of the last stage. In fact that in Wilson and
Korakianitis (1998) 16 parameters are used to describe a blade section and in ansys
bladegen, which was used for the geometry creation in the simulation, only 8 parameters
are possible to define, there was a transfer needed to rebuild the model in ansys bladegen

Weimar Optimization and Stochastic Days 10 – November 21–22, 2013 4



Figure 1: Velocity profile of the initial diffuser.

with these 8 parameters shown in Fig. 2. As it is shown, the rotor hub profile is more like
a reaction type blade then a typical low degree reaction type blade, which is more often
used for low pressure steam turbine blades. The advantage of this is that the friction
losses in the boundary layers are relatively low at this section. But this was not the main
reason for this type of geometry, in the development of the blades, it comes to separations
in this area if the reaction type was lower as it is shown in 2. The result is that there is
high gradient for the velocity and pressure from hub to shroud, which can be seen in 11
and 13. In real applications it would be a more uniform distribution.

The same process has been done for the diffuser, which was also build up on infor-
mation of the industry. There is a simplification made for the diffuser, so that it is axis
symmetric. Real used diffusers are not axis symmetric because they have a different ge-
ometry in the direction of the condenser. That means for the flow simulation that also
the calculated flow is axis symmetric in the diffuser, normally it would be a more com-
plex 3-dimensional flow field. But in this case this simplification also reduces the needed
calculation time. In Fig. 1 is shown the 2-dimensional velocity profile of the diffuser of
the initial design.

Based on a fully parametric geometry model the software ANSYS Turbogrid and
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Stator Rotor

Figure 2: Geometry of the profiles for stator and rotor.

ANSYS Meshing is used to realized an automatic mesh generation with in mean 1.5 mio.
hexahedron elements for the last stage used and 180k elements for the diffuser. The
CFD simulation is realized by the ANSYS CFX solver in combination with mechanical
and dynamic analysis for further restrictions in the optimization with 57k tetrahedra
elements in the mean.

The boundary conditions for the CFD simulations, are also based on requirements of
the industry. It is performed a steady state analysis with a k-ε turbulence model and
a “total energy” heat transfer model. The used fluid is steam without wetness effects.
For the inlet of the stage a pressure profile combined with a velocity profile from a real
existing low pressure turbine was defined. Also the static temperature of 320 K was
set. The setting for the turbulences in the inlet was medium intensity (5%). In the
outlet the condenser pressure was 5.500 Pa. For the interface between stator/rotor and
rotor/diffuser there was used the mixing model ”‘stage”’. The stage model uses the
averaged circumferential flow informations, so that there is a 2-dimensional flow field
information transferred to the diffuser. So there is a 3D model for one pitch length for the
stage with periodic boundary conditions and a 2D model for the diffuser with rotational
symmetry. The rotor tip jet is also considered due to the fact, that it has a high influence
on the diffuser especially on possible separation effects. The used sections to calculate
the output values are shown in Fig. 3, according to the indices 0, 1, 2 in the formulas of
the outputs.

For the mechanical and dynamical boundary conditions the rotation speed is equal to
50 s−1. The influences of the pressure and temperature of the CFD analysis were not
considered, because they are marginal next to the influence of the centrifugal force. The
material used for the blades was X5CrNiCuNb16-4 (Material specs from Edelstahlwerke
(2008)).
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Figure 3: Used section 0, 1, 2 for the calculation of the output variables

In Fig. 4 shows the convergence of the RMS residuals. After nearly 500 Iterations the
residuals confirm the stop criteria of 1e-5, according to Ansys (2012), this represents a
sufficiently good convergence for such applications.

For the optimization different output values are used as optimization objective or as
restrictions, which are shown in the tabs. 2, 4, 5. Next to the RMS residuals there were
also proved that the output parameters reach a convergent result, for example shown for
the total isentropic stage efficiency in Fig. 5.

3 Optimization
The following part presents the results of the sequential and coupled optimization.

3.1 Optimization process
Optimization is defined as a procedure to achieve the best outcome of a given objective
function (sometimes also called cost function) while satisfying certain restrictions. The
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Figure 4: RMS residuals of the CFD simulation.

deterministic optimization problem

f(d1, d2, . . . dnd)→ min
el(d1, d2, . . . dnd) = 0; l = 1, ne

um(d1, d2, . . . dnd ,γ) ≥ 0; m = 1, nu

dli ≤ di ≤ dui

di ∈ [dli , dui ] ⊂ Rnd

(1)

is defined by the objective function f : Rnd → R subject to the restrictions, defined
as equality and inequality constraints el and um. The variables d1, d2, . . . dnd are the
optimization or design variables and the vector of the partial safety factors γ ensures
the system or design safety within the constraint equations um, for example defining a
safety distance u(d, γ) = yg/γ − yd ≥ 0 between a defined limit state value yg and the
nominal design value yd of a physical response parameter y = f(d). In structural safety
assessment, a typical constraint for the stress is given as

u(d, γ) = σy,k/γ − σd ≥ 0 (2)

ensuring the global safety distance

∆γ = σy,k

(
1− 1

γ

)

between the defined quantile value σy,k of the yield stress and the nominal design stress σd
with the global safety factor γ. Whereby, in the real approach with given uncertainties,
σd corresponds to the mean of Mises equivalent stress σ̄e at the current design point.
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Figure 5: Convergence of the total isentropic stage efficiency.

3.2 Global variance-based sensitivity analysis
A global variance-based sensitivity analysis, as introduced in Saltelli et al. (2008), can be
used for ranking variables x1, x2, . . . , xnr with respect to their importance for a specified
model response parameter

y = f(x1, x2, . . . , xn)

depending on a specific surrogate model ỹ. In order to quantify and optimize the prognosis
quality of these meta-models, in Most and Will (2012) the so called coefficient of prognosis

CoP = 1− SSEP
SST 0 ≤ CoP ≤ 1 (3)

of the meta-model is introduced. In contrast to the commonly used generalized coeffi-
cient of determination R2 based on a polynomial regression model, in Eq. (3) variations of
different surrogate models ỹ are analysed to maximize the coefficient of prognosis them-
selves. In this equation 3 is SSEP the sum of squared prediction errors. These errors are
estimated based on cross validation and gives some indication of the predictive capability
of the surrogate model. SST is the sum squares and the equivalent to the total varia-
tion. This procedure results in the so called meta-model of optimal prognosis, used as
surrogate model ỹ with the corresponding input variable subspace which gives the best
approximation quality for different numbers of samples, based on a multi-subset cross
validation obtained by latin hypercube sampling Huntington and Lyrintzis (1998). The
single variable coefficients of prognosis are calculated as follows

CoPi = CoP · S̃Ti (4)
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with the total sensitivity indices

S̃Ti = 1− Vx∼i(Exi(ỹ | x∼i))
V (ỹ) (5)

which have been introduced in Homma and Saltelli (1996), where Exi(V (ỹ|x∼i)) is the
remaining variance of ỹ that would be left, on average, if the parameter of xi is removed
from the model. In Eq. (5) x∼i indicates the remaining set of input variables. In order
to estimate the first order and total sensitivity indices, a matrix combination approach is
very common Most (2012).

3.3 Optimization process in this work
The process of the optimization is shown in the Fig. 6. First before each component
gets optimized, a sensitivity analysis is performed to determine the sensitive parameters
for each output parameter and their correlations. Therefore a Latin hypercube sampling
(LHS) is made with N = 2 · (Inputparameters+Outputparameters) designs calculated.
That means there were 107 designs for the rotor optimization, 83 designs for the diffuser
optimization and 130 for the coupled optimization. The Latin hypercube sampling is a
advanced method of the monte carlo simulation, which made equal distributed designs
in their parameter space. Following that, a pre-optimization is based on the information
of the Latin hypercube sampling creating a meta-model. That means the meta model
will be created through the information of the calculated design in the Latin hypercube
sampling. The 10 best designs of the Latin hypercube sampling are selected as the starting
population for an evolutionary optimization algorithm with all parameters available for
each component. These calculations are not carried out in ANSYS, but on the basis of
the meta-model. Therewith, it is possible to calculate in a few minutes many designs,
to obtain a better design without the use of time expensive calculations. Subsequently,
the best design of the pre-optimization will be selected and recalculated in ANSYS. If
this design fulfils the constraints it will be used as a start design for a adaptive response
surface method (ARSM) optimization, but this time each design is calculated in ANSYS
and only sensitive parameters for the respective objective functions and constraints are
active. This recalculation depends on how good the meta model is. So it might be
possible, that some output have a deviation in the recalculation. If then the constraints
are violated this design can not be chosen as a start design for the following optimization.
In this case the best design of the LHS will be taken for the further optimization. Possible
reasons for such deviations are e.g. strong non-linear physical behaviours or problems with
meshing or wrong simulation settings. The prognosis ability is made through a so called
coefficient of prognosis (CoP), which gives a percentage value of how good is the output
value describable through the input variables. If these values are rather low (≤ 50) it can
be expected, that the recalculation will have strong deviations.

In the following this procedure will be repeated, for the rotor, diffuser and the coupled
system.

The constraints for the optimization regarding the geometry of the blade and diffuser
are resulted mainly from the industry through guidelines. Additional constraints were
safety factors for the stresses and a minimal distance of the eigenfrequencies to the machine
frequency. For the objective the were two Output used. First for the rotor optimization
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Figure 6: Overview of the optimization process

the total isentropic stage efficiency and second for the diffuser and coupled optimization
the specific performance as shown in Tab. 1.

3.4 Sequential optimization work flow
As the first step the optimization of the rotor blades is realized. Which means that the
parameters of the diffuser are deactivated for this process. In Fig. 7 the parametrization
for the blade is shown. According to five profile sections with eight parameters, in total
40 parameters for the blade optimization are given. The leading and trailing edge are
described through two radii, which result out of the other parameters. The target of this
first optimization process is to maximize the isentropic stage efficiency ηst.

As a result of the sensitivity analysis, the coefficients of prognosis can be used to
measure the importance of the input variables. One example is shown in Fig. 8 for the
isentropic stage efficiency. The largest variance of the efficiency is described by the profile
at 75% of the blade span. Fig. 9 shows the meta-model of the total isentropic stage
efficiency in the subspace of the most important parameters.

The results after the adaptive response surface method optimization and the pre-
optimization in comparison to the initial design are shown in Tab. 2 with an increasing
of the efficiency of nearly 2% in addition to compliance with the constraints.

After the blade optimization, the diffuser optimization is performed. Fig. 10 shows
the parametrization. Therefore, 11 parameters are used for the diffuser optimization. The
objective for this optimization was the specific performance, because now the optimizer
should reach the best performance out of both components with changing the diffuser

Weimar Optimization and Stochastic Days 10 – November 21–22, 2013 11



Table 1: Constraints um(d) and objective f(d)

Type Description Formula Unit
Constraint (hin h − hin l) · 1, 2 ≥ lmax u1(d) =

(hin h − hin l) · 1, 2− lmax ≥ 0
[m]

Constraint (2·π·hout·lout)
((h2

in h−h2
in l)·π) ≥ 2 u2(d) = (2·π·hout·lout)

((h2
in h−h2

in l)·π) − 2 ≥ 0 [m2]

Constraint tLE ** ≥ tTE ** u3(d) = tLE ** − tTE ** ≥ 0 [m]
Constraint |fith| needs to be at least

5s−1 away of f0th

u4(d) = |fith − f0th| − 5 ≥ 0 [s−1]

Constraint γr ≥ 1.5 u5(d) = γr − 1.5 ≥ 0 []
Constraint γeqv ≥ 1.5 u6(d) = γeqv − 1.5 ≥ 0 []

Objective Total isentropic stage
efficiency ηst

f1(d) =
Tex,1
Tin,0

−1

(
pex,1
pin,0

)
κ−1
κ −1

[]

Objective Specific performance P/ṁin f3(d) = 2·π·M ·foth
ṁin

[Jkg−1]

parameters. It has also been possible to take the pressure recovery as the objective
because performance and pressure recovery are correlated. As already described, a pre-
optimization was carried out based on a meta-model, for each optimization. Table 3
shows as an example of the very small differences between the approximated calculation
and recalculation demonstrated on the diffuser pre-optimization. So that this method is a
useful tool to perform fast calculations under some circumstances with great improvements
as presented here.

The final results of the diffuser optimization and thus the sequential optimization are
shown in Tab. 4. This time the initial designs stand for the optimized design of the rotor
optimization. The resulting increasing of the specific performance is very low, because it
is not possible for the optimizer to get a better design out of diffuser optimization. The
diffuser is limited to the fixed flow field of the last stage. This means, it is just possible
to get a more improved specific performance with changing the flow field in the diffuser.
This is reached in this case through increasing the pressure recovery. But as shown there
is not a lot of further potential available.

3.5 Coupled optimization work flow
The last step is the coupled optimization of the rotor and diffuser. Now, the specific
power is used as the optimization target. The optimization results are presented in Tab. 5.
As shown in this table the specific performance is much better in comparison with the
sequential optimization. The optimizer reaches the same level of stage efficiency like the
sequential optimization but with keeping the pressure recovery as it was in the initial
design. That means with the possibility of changing all parameters, the optimizer could
change them in a way that both components benefit. This clearly shows the advantage
of the coupled optimization compared to the sequential optimization.
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Figure 7: Overview of the rotor parametrization.

4 Interpretation of results
Table 6 shows an overview of the different output variables and their sensitive parameters
in descending order of importance, depending on the optimization steps. Many of the
sensitive parameters of the rotor optimization can also be found in the coupled optimiza-
tion again. Similarly, the same for the significant parameters of the diffuser optimization.
Which means that irrespective of whether a coupled or sequential optimization is made,
the same key parameters are identified. Maybe, non-observance of diffuser parameters in
the rotor optimization will result in wasting of optimization potential. In the sequential
optimization there were much more parameters, for example for the blade optimization,
taken as really needed, because most of them have got a much lower effect on the ob-
jective as in comparison with only one additional parameter of the diffuser, as shown
in this table. Furthermore, this overview shows a certain dominance of the influence of
parameters on the performance of the blade and the pressure recovery, which also depend
on the diffuser. For the comparison of each column the main parameters of the diffuser
optimization move under the main parameters of the rotor results in the optimization of
the coupled optimization.

Thus, a further advantage of the coupled optimization is to determine the parameters
with the greatest impact in the overall system to develop or to exhaust the full potential
for a better performance. Therefore, in Tab. 7 the comparison of sequential and coupled
optimization of the relevant output parameters and the constraints is also shown. The
result is a specific performance advantage for coupled optimization of 1.8 % compared
to the sequential optimization. Furthermore, the pressure recovery with +12.4% and the
stage efficiency with +0.2% are better than the sequential optimization results. Only the
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Figure 8: Most important parameters for the total isentropic stage efficiency.

safety factor of the coupled optimization regarding the von Mises stress is worse at -5.94%
as in the sequential optimization, but meet the constraints of ≥ 1.5. Clearly visible is
the large influence of a better pressure recovery on the specific power, although there is
almost the same stage efficiency for both optimization sequentially and coupled. It should
also be noted that only a single parameter (lout) was active in the ARSM of the coupled
optimization. One parameter from the diffuser may be enough, to change along with the
blade parameters in order to achieve a better overall result.

As a further result, as shown in Fig.s 11-12 and 13-14, the total pressure and velocity
profiles in the diffuser inlet and outlet of each optimization step is given for comparison.
The overall pressure and velocity distribution in the inlet is nearly equal for all three
versions of the diffuser. In the outlet, the distribution of the pressure and velocity of the
initial design was much more uniform as it was for the coupled and sequential version.
Even so the results for the pressure recovery showed that the initial design and the coupled
optimized design got nearly the same value. The pressure recovery of the sequential
optimized design was more worst. This can also be seen in this diagrams. The reduced
velocity, which is the result of a diffuser to transfer the kinetic energy into potential
energy, is much better for the initial and coupled optimized design. There is a high peak
of velocity in the sequential optimized version. So the integral of these curves is much
higher for the sequential version as it is for the others, which leads to a overall lower
pressure recovery regarding that all three got nearly the same inlet conditions.

Fig. 15 shows the scaled form of the different diffuser geometries.
In total 313 designs are calculated with a duration of 33 days and for the coupled

optimization and 263 designs with a duration of 28 days for the sequential optimization.
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Figure 9: Total isentropic efficiency and the most important parameters.

As hardware two computers with following specifications are used

• CPU: 2 x AMD Opteron 6376 with 16 cores, 2.3 GHz

• 64 GB of memory

This computational effort shows whether it makes sense to perform an optimizations
using 3D calculations or whether it would be better to use 2D calculations or similar
replacement model. The computation efforts for both paths are very long and would
probably be too time consuming for use in practice. However, the presented method with
a less computationally intensive model or equivalent model and subsequent recalculation
in 3D could also be a time efficient way to improve the development of such machines.

5 Conclusion
The specific performance benefit of the coupled optimization over the sequential opti-
mization is 1.8% in compliance with all constraints. This is mainly explained through
a much better interaction between stage and diffuser. In both optimization methods, a
similar high stage efficiency is achieved. However, in the sequential optimization in a
way that it prevented the diffuser, to reach a much better overall performance, which is
below the overall performance of the coupled optimization. In the coupled variant the
same efficiency is achieved, but in such a way that the diffuser could also achieve a very
high pressure recovery. During the optimizations the whole parameter space, which is
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Table 2: Overview for each optimization step after the final optimization of the rotor
blades

Symbol Oinit Opre Ofin Unit
AR 1,44 1,44 1,44 []
P/ṁin 1,415e5 1,431e5 1,395e5 [Jkg−1]
cpr 0,579 0,561 0,435 []
ṁin 76,636 77,075 77,126 [kgs−1]
ηst 0,867 0,879 0,886 []
σr 7,948e8 8,811e8 8,661e8 N/m2

σeqv 8,287e8 8,087e8 7,931e8 N/m2

γeqv 1,553 1,591 1,622 []
γr 1,577 1,434 1,469 []
f1th 82,97 83,75 85,09 [s−1]
f2th 190,55 181,25 177,56 [s−1]
f3th 174,13 231,82 232,54 [s−1]

Table 3: Differences between meta-model and recalculation of the diffuser pre-
optimization

Symbol Metamodel Recalulation Difference Unit
P/ṁin 1,417e5 1,416e5 0,7% [Jkg−1]
cpr 0,493 0,478 3,1% []

used for both, is equal. Therefore, it can be seen as the final result that the coupled
optimization in this work has significant advantages over the sequential. The fact that
there is a coupling of the two components since the outlet of the stage and thus the flow
field corresponds to the field entry of the diffuser. Both have influence on the performance
values of the overall system. Although the flow can be designed that it produces a good
stage efficiency for the output stage, but a poor flow field for the diffuser and vice versa.

To give this work a conclusion, there is a recommendation to develop and optimize
the last stage and the diffuser in a coupled way to use the full potential of both because:

1. There is a better understanding possible of the relationship of individual perfor-
mance output parameters and the parameters affecting them across the component
boundaries.

2. It can be exhausted additional potential, by simultaneous modification of parameters
of both components to a better overall performance.
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Figure 10: diffuser parametrization.

Table 4: Overview for each optimization step after the final optimization of the diffuser

Symbol Oinit Opre Ofin Unit
AR 1,44 1.384 1,417 []
P/ṁin 1,395e5 1,416e5 1,418e5 [Jkg−1]
cpr 0,435 0,478 0,508 []
ṁin 77,126 77,075 77,174 [kgs−1]
ηst 0,886 0,884 0,883 []

3. The flow field is adjusted, therewith both components can benefit and not a com-
ponent is better or worse.

4. It may be more time efficient to develop both components simultaneously.

The authors would like to express their thanks to C. Musch of the Siemens AG for his
assistance of collaborative method implementation into the CAE process.
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Table 5: Overview for each optimization step after the final optimization of the coupled
optimization.

Symbol Oinit Opre Ofin Unit
AR 1,44 1,44 1,46 []
P/ṁin 1,415e5 1,431e5 1,445e5 [Jkg−1]
cpr 0,579 0,561 0,571 []
ṁin 76,63 77,07 77,29 [kgs−1]
ηst 0,867 0,879 0,885 []
σr 7,948e8 8,811e8 8,352e8 N/m2

σeqv 8,287e8 8,087e8 8,403e8 N/m2

γeqv 1,553 1,591 1,531 []
γr 1,577 1,434 1,501 []
f1th 82,97 83,75 84,26 [s−1]
f2th 190,55 181,25 173,46 [s−1]
f3th 174,13 231,82 216,43 [s−1]

Table 6: Overview of the sensitive parameters in the individual optimization steps

do Orot Odif Ocp

λSTAG 75 lout λSTAG 75
tLE 75 hout loutP/ṁin

- lmax -

cpr

λSTAG 75 lout λSTAG 75
λSTAG 10 hOut hOut
tLE 75 - λSTAG 50
ζTE 75 hout λSTAG 75
λSTAG 75 - βTE 75ηst
βTE 75 lout ζTE 75
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Table 7: Differences between the output parameters of sequential and coupled optimiza-
tion.

P/ṁin[Jkg−1] ηst [%] cpr[] γeqv[] γr[]
Oseq 1,418e5 88,3 0,508 1,622 1,469
Ocp 1,445e5 88,5 0,571 1,531 1,501

∆ in % 1,8 0,2 12,4 -5,94 2,1
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Figure 11: Pressure profiles in the diffuser inlet of each optimization step.
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Figure 12: Pressure profiles in the diffuser outlet of each optimization step.
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Figure 13: Velocity profiles in the diffuser inlet of each optimization step.
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Figure 14: Velocity profiles in the diffuser outlet of each optimization step.
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Figure 15: Superimposed view of the diffuser geometries in the individual optimization
steps.
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