

Realize Your Product Promise™

Design and Optimization of Turbo Charger Turbine Maps by Meta-Model of optimal Prognosis

Fluid Dynamics

Structural Mechanics

Electromagnetics

Systems and Multiphysics

optislance

Johannes Einzinger ANSYS Germany

ANSYS Turbo Charger, Basics

ANSYS Turbo Charger, Thermodynamics

RY DESIGN TONA . -D SIMULATION A-MODEL 1 ø æ

D

⋧ ,

1× 🖌

٧.

ANSYS Meridian Plane

Defined Parameters:

Rotational Speed: Ω

Pressure Ratio: $\frac{p_{t3}}{p_4} \rightarrow \Delta h_{is} \rightarrow c_{is}$ Velocity Ratio: $\frac{u_3}{c_{is}} \rightarrow u_3 \rightarrow r_3$ Velocity Ratio: $\frac{c_{m4}}{u_3} \rightarrow c_{m4}$ Specific Speed: $n_s = n \cdot \frac{Q^{0.5}}{c_{s}}$

Radius Ratio:

Loss Coefficient:

 $\frac{c_{m4}}{u_3} \rightarrow c_{m4}$ $n_s = n \cdot \frac{Q^{0.5}}{\Delta h_{is}^{0.75}} \rightarrow r_{4s} \rightarrow \dot{m}$ $\frac{r_{4h}}{r_{4s}} \rightarrow r_{4h}, u_{4h}, u_{4s}$ $\Delta h_V = 0.5 \cdot \zeta \cdot c_{m4}^2$

Height:

 $\dot{m} = 2 \cdot \pi \cdot r \cdot b \cdot \rho \cdot c_{m3}$

Entropy Gain:
$$\Delta s = c_p \cdot ln\left(\frac{T_4}{T_3}\right) - R \cdot ln\left(\frac{p_4}{p_3}\right)$$

ANSYS Blade to Blade

Euler Equation $\Delta h_t = \Delta (\boldsymbol{u} \cdot \boldsymbol{c}_u)$

Total Enthalpy stn Frame $h_t = h+0.5 \cdot c^2$

Total Enthalpy rel Frame $h_t' = h+0.5 \cdot w^2$

Inlet:

$$\alpha_3, u_3, \beta_3 \approx \beta_{B3} \rightarrow c_3, w_3$$

Outlet:

$$lpha_4 = 0$$
, c_{m4} , $u_4
ightarrow c_4$, w_4 , $oldsymbol{eta}_4$

ANSYS Design Parameters

Output Parameter will be compared with CFD Result → Correlation

Input Parameter

#	Name	Value	Ref.Value	Lower Bound	Upper Bound	
1	LossCoefficientW	4.0	4.0	3.5	4.5	
2	NumberBlades	7.0 8.0 9.0 10.0 11.0	8.0	-	-	
3	RatioR3H_R3S	0.3	0.3	0.25	0.35	
4	SpecificSpeed	0.7	0.7	0.4	1.0	
5	RatioU2_CIS	0.7	0.7	0.5	0.9	
6	RatioCM3_U2	0.25	0.25	0.2	0.35	
7	OutletPressure	200000.0	200000.0	100000.0	250000.0	
8	BetaB2	0.0	0.0	-30.0	0.0	
9	Alpha2	65.0	65.0	45.0	75.0	

Constants

25	InletTotalTemerature	1000.0	1000.0	900.0	1100.0
26	InletTotalPressure	400000.0	400000.0	360000.0	440000.00000000006
27	GasConstantR	287.0	287.0	258.3	315.70000000000005
28	SpecificHeatCP	1004.0	1004.0	903.6	1104.4
29	RotVelocity	50000.0	50000.0	45000.0	55000.0000000001

ANSYS BladeModeler

- Mean Line Design tool
 Preliminary blade design
- Generation of 3D CAD
- Auto creation of
 - One or all blades
 - Hub & shroud solid
 - Fillets, …
 - Periodic fluid volumes for CFD analysis
 - Named selections
- Parametric CAD modifications

ANSYS Meridian Plane

Blade to Blade

Blade design on 2 layers, Hub and Shroud Bezier curve with 4 Control Points

ANSYS Design Parameters

	#	Name	Value	Ref.Value	Lower Bound	Upper Bound
	1	LossCoefficientW	4.0	4.0	3.5	4.5
	2	NumberBlades	7.0 8.0 9.0 10.0 11.0	8.0	-	-
	3	RatioR3H_R3S	0.3	0.3	0.25	0.35
Design	4	SpecificSpeed	0.7	0.7	0.4	1.0
Design	5	RatioU2_CIS	0.7	0.7	0.5	0.9
	6	RatioCM3_U2	0.25	0.25	0.2	0.35
$\int_{-\infty}^{\infty} \frac{T_{4is}}{\pi} = \left(\frac{p_4}{k_r}\right)^{\frac{k_r-1}{k_r}} \qquad 3 $	P. T	OutletPressure	200000.0	200000.0	100000.0	250000.0
1 19 17	8	BetaB2	0.0	0.0	-30.0	0.0
ana = 2 cont	P. 9	Alpha2	65.0	65.0	45.0	75.0
P=P.R.T Shul	10	BM_HubZ3_Rel	0.4	0.4	0.325	0.5
4	11	BM_ShdZ3_Rel	0.2	0.2	0.1	0.25
	12	BM_ShdR2_Rel	0.4	0.4	0.2	0.6
	13	BM_HubR2_Rel	0.3	0.3	0.2	0.4
	14	BM_HubR3_Rel	0.05	0.05	0.0	0.1
Geometr	15	BM_ShdR3_Rel	0	0	-0.0	0.2
	16	BM_HubZ4_Rel	0.7	0.7	0.6	0.8
M	17	BM_ShdR4_Rel	-0.3	-0.3	-0.4	-0.0
	18	BM_ShdZ4_Rel	0.4	0.4	0.35	0.5
	19	BM_L2_Rel	0.55	0.55	0.45	0.65
	20	BM_HubBeta2_Rel	0.8	0.8	0.6	1.0
	21	BM_HubBeta3_Rel	0.4	0.4	0.1	0.5
	22	BM_ShdBeta2_Rel	0.7	0.7	0.5	1.0
	23	BM_ShdBeta3_Rel	0.3	0.3	0.05	0.4
	24	BM_HubBeta4_Inc	10	10	0.0	15.0
Pin	25	InletTotalTemerature	1000.0	1000.0	900.0	1100.0
	26	InletTotalPressure	400000.0	400000.0	360000.0	440000.0000000006
Constant	27	GasConstantR	287.0	287.0	258.3	315.7000000000005
	28	SpecificHeatCP	1004.0	1004.0	903.6	1104.4
	29	RotVelocity	50000.0	50000.0	45000.0	55000.0000000001

ANSYS TurboGrid

- Automated mesh generation for bladed turbo machinery components
- High quality hexahedral grids
- Repeatable
 - Minimize mesh influence in design comparison
- Scalable
 - Maintain quality with mesh refinement

Domain ALL	•		•
Mesh Measure	Value	% Bad	
Minimum Face An	28.1938 [degree]	0.0000	
Maximum Face A	151.817 [degree]	0.0000	1
Maximum Elemen	13.2751	0.0000	
Minimum Volume	7.23517e-13 [m^3]	0.0000	1
Maximum Edge L	135.565	0.0000	1
Maximum Connec	10	0.0000	1

October 14, 2013

- Fast & scalable solver
- Low speed to supersonic
- Steady/transient
- Turbulence & heat transfer

- Multiple Frame of Reference
- Multi-phase flow
- Real fluids
- Fluid/structure interaction

Set-Up & Boundary Conditions

Expressions

ANSYS[®]

-		•	
	d	Entropy Gain	(Soutet-Sinlet)/myAirR
	d	MassFlow	massFlow()@Inlet*nSector
	d	Sinlet	massFlowAve(Static Entropy)@Inlet
	d	Soutet	massFlowAve(Static Entropy)@Outlet
	d	Tin	massFlowAve(Temperature)@Inlet
	d	Torque	(torque_z()@Blade+torque_z()@Hub+torque_z()@Shroud)*nSector
	d	Tout	massFlowAve(Temperature)@Outlet
	d	Ts Ratio	Ttin/Tout
	d	Tt Ratio	Ttin/Ttout
	쁹	Ttin	726.85 [C]
	d	Ttout	massFlowAve(Total Temperature in Stn Frame)@Outlet
	d	U2	r Inlet*myomega/1[rad]
	d	U2 cis	U2/c is
	d	aitern0	20
	d	aitern 1	100
	d	aitern2	200
	쀥	alpha in	1.1344640137935 [radian]
	d	c is	sqrt(2*max((massFlowAve(Total Enthalpy in Stn Frame)@Inlet-massFlowAve(Static I
	d	c m	massFlowAve(Velocity w)@Outlet
	d	cm U2	cm/U2
	쀥	myAirCP	1004 [J kg ^-1 C ^-1]
	d	myAirCV	myAirCP-myAirR
	d	myAirDensity	R/myAirR
	쀥	myAirR	287 [] kg^-1 C^-1]
	d	myeta is ts	(1-1/Tt Ratio)/max((1-((1/max(ps Ratio, 1.01))^((mykappa-1)/mykappa))),0.01)
	d	myeta is tt	(1-1/Tt Ratio)/max((1-((1/max(pt Ratio,1.01))^((mykappa-1)/mykappa))),0.01)
	d	myeta pl ts	ln(1/Tt Ratio) / min(ln((1/max(ps Ratio, 1.01))^((mykappa-1)/mykappa)),-0.01)
	d	myeta pl tt	ln(1/Tt Ratio) /min(ln((1/max(pt Ratio, 1.01))^((mykappa-1)/mykappa)),-0.01)
	d	mykappa	myAirCP/myAirCV
	쀥	myomega	5235.9877558333328 [radian s^-1]
	쀥	nSector	8
	d	pin	massFlowAve(Pressure)@Outlet
	쁹	pout	200000 [Pa]
	d	poutlet	pout+(1-ramp)*(ptin-pout)
	d	ps Ratio	ptin/pout
	d	pt Ratio	ptin/ptout
	쀥	ptin	400000 [Pa]
	d	ptout	massFlowAve(Total Pressure in Stn Frame)@Outlet
	掜	r Inlet	0.0803175295488 [m]
-			

Fluid ideal Gas Turbulence Model SST Total Pressure and Temperature @ Inlet Static Pressure @ Outlet Relative Frame of Reference

ANSYS CFX-Post / Turbo-Post

- Turbo post-processing
 - Turbo plots
 - Blade-to-blade
 - Meridional
 - Turbo charts
 - Blade loading
 - Hub to shroud
 - Turbo report templates
 - 1 component → multi-stage

ANSYS Design of Experiments

ANSYS Licensing, HPC & Parametric Packs

- A lot of calculations!
- How can these calculations be done in a quick way?

Meta-Model of Optimal Prognosis

ANSYS Best Practice CoP

- CoP is increasing with Number of Samples: 100% or to a Limit → "Noise"
- The higher the Dimension of MoP the more Samples are required
- The more non-linear MoP is, the more Samples are required
- MoP wrt to Lower/Upper Limit of Parameters

ANSYS Trouble Shooting for small CoP

- Number of Evaluated Designs?
 Check CoP(80)~CoP(150)
- Numerical Error? – Best-Practice!
- Model Error?
 - Turbulence Model
 - Steady vs. transient
 - Hot vs. cold Geometry
- Multiple-Mechanisms – Use alternative Output

ANSYS Characteristic Data: Mass Flow Rate

High CoP 93% Important Parameters Plausible MoP

ANSYS Characteristic Data: Efficiency

Medium CoP 61% / 66%

ANSYS Alternative for Efficiency

Definition of Efficiency:

- CoP=66%

$$\eta_{pl} = \frac{\kappa}{\kappa - 1} \cdot \frac{ln(T_{t4}/T_{t3})}{ln(p_4/p_{t3})}$$

• Entropy - CoP=89% $\Delta s = c_p \cdot ln\left(\frac{T_4}{T_2}\right) - R \cdot ln\left(\frac{p_4}{p_2}\right)$

Total Temperature
 – CoP=93%

ANSYS Correlation: Mass Flow Rate

- Real Mass Flow Rate is smaller than predicted due to blockage
- MoP can be used for blockage correlation
- Mass Flow Rate depends on
 - Specific Speed
 - Outlet Pressure
 - Blade Inlet Angle

ANSYS Correlation: Efficiency

ANSYS Summary & Outlook

- Summary
 - Turbine Map as Meta-Model m,η=f(p, Geometry)
 - Design Correlations can be derived from Meta-Model
 - − Primary Design by Meta-Model → turboSLang
- Outlook
 - Quality might be improved by
 - Finer Mesh to reduce numerical noise
 - More Design Points in Meta-Model
 - Better Lower/Upper Bounds for Parameter
 - Turbine Map as Meta-Model m,η=f(p,Ω, Geometry)
 - Compressor Map as Meta-Model

