

Statistical Analysis of a mistuned Compressor

Fluid Dynamics

Structural Mechanics

Electromagnetics

Systems and Multiphysics

Johannes Einzinger ANSYS

ANSYS What is Mistuning?

- Why does Blade x break?
 - Local Production Error?
 - Local Material Error?
 - Local Overload?
 - Local Erosion?
 - ...
- Non cyclic System due to
 - Allowed Production Tolerances
 - Small Erosion
- → Mistuned System

Rotor Damage at Blade x

Turbo Machinery, FSI Coupling ANSYS[®]

Steady CFD

- **Aero Dynamic Performance**
- **Characteristic** @ Design Point
- **Steady Pressure/Temperature**

Pre-Stress Analysis

- **Steady/Averaged Mean Stresses**
- **Steady/Averaged Deformation**
- **Stress Stiffening**

Transient CFD

- Aero Dynamic Performance
- **Characteristic** @ Off-Design
- **Transient Pressure Loads**

Modal Analysis

- **Eigen Frequencies/Modes**
- **Resonance?**
- **Model Order Reduction**

Blade Flutter

- **Fluid Reaction**
- Stability
- **Aero Dynamic Damping**

Dynamic Analysis

- **Transient Stresses**
- Fatigue

Coupling

Mistuning

Structure

4

ANSYS Transient CFD – Dynamic Loading

$$f(t) = \sum_{n=0}^{N} a_n \cdot \cos(n \cdot \omega \cdot t) + b_n \cdot \sin(n \cdot \omega \cdot t) = F(\omega)$$

Fourier Transformation

ANSYS Pre-Stressed Modal Analysis

November 6, 2014

6

© 2011 ANSYS, Inc.

ANSYS Mistuning, Modelling

1 DOF Minimal Modell

2 Sector Modell with Point Mass

CMS Modell (1 Sector!)

Full Model with Random Fields

- Each Blade Oscillation is represented by one mode, i.e. DOF
- Parameter: cantilevered blade frequency and coupling stiffness
- Pro:
 - efficient due to reduced order model
- Con:
 - limited in modelling capacities

ANSYS 2 Sector Model with Point Mass

- Cyclic System with 2 sectors
- Additional Point Mass on 2nd Sector → Mistuning
- Pro:
 - easy to apply
- Con:
 - regular pattern implicit included → detuned

ANSYS CMS Model

- Cyclic Model + noncyclic Mistuning
 - Proportional Mistuning
 - Intended Mistuning
- Different Stress Levels on Sectors/Blades
- Pro:
 - efficient: single sector mesh required
- Con:
 - small Mistuning

ANSYS Full Model with Random Fields

- Measured / Assumed Variation → Random Fields (=Mode Shapes of Correlation Matrix)
- Random Field is morphed on tuned System Mesh
- Pro:
 - Model for large Mistuning
 - efficient handling of statistics
- Con:
 - computational effort

ANSYS Application & Best-Practice

- Reason for small Coefficient of Prognosis:
 - Number Design Points
 - Numerical Error
 - Model Error
 - Multiple Mechanism
- Number of Design Points for Meta-Model depends on:
 - Number of <u>important</u> parameters
 - Nonlinearity of Response Surface

Objective for Meta-Model: Maximal Coefficient of Prognosis

- 8 Sector Model
 - 16 Input Parameters
 - Normal Distribution
 - CoV=1%
- Simulation:
 - Modal Analysis
 - Forced Response, Excitation @ 1 Sector
- Output:
 - 5 Eigen Frequencies
 - Frequency Sweep:
 - Signals @ Sectors=f(Ω)
 - Signals for Nodal Diameter
 @ Eigen Frequency

CoP is increasing with Number of Design Points!

CoP [%]	N=200	400	800
Freq. ND=0	96.6	98.7	99.1
Freq. ND=1	75.7	89.5	94.5
Freq. ND=2	81.4	92.6	94.0
Freq. ND=3	79.6	94.2	95.0
Freq. ND=4	88.6	97.6	98.4

Excitation Frequency

Sector Number

ANSYS 2 Sector Model with Point Mass

- Radial Compressor with 2x8 Sectors
- 10 Point Masses on even Sector
- Weibull Distribution, CoV 1% Sector Mass
- Excitation with CFD Loads
- Excellent CoP for all Output Variables with 100 Design Points

ANSYS 2 Sector Model with Point Mass

- Disp. Variation ~1% for Blade 1 and 2
- All Input Parameters are important wrt to Output

ANSYS Summary and Outlook

- Summary
 - Mistuning has significant Influence to Bladed-Rotors (and other structures)
 - Efficient Mistuning Models are available
- Outlook
 - Application of CMS Model,
 → Release 16
 - Application of Random Fields

Use Simulation and Statistical Analysis...

...to avoid:

