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Abstract: 
 
In technical design it is important to take into consideration not only the performance of a nominal design, 
but also any tolerated designs with deviations. The larger these deviations can be tolerated, the cheaper 
the design will be. The aim of the following study is to optimise tolerance of turbine wheels of small gaso-
line turbochargers, which means to tighten them where necessary, and release them where possible. 
Using ANSYS Workbench (including BladeGen for 3D blade design) and OptiSLang enhanced with Py-
thon scripts, an automatized procedure for FEM calculations on non-nominal geometries can be set up. 
This paper will describe the geometry generation and verification with statistical methods. The ANSYS 
Workbench is used to generate CAD and FEM models of the turbine wheels. These FEM models are 
used to control the deviations of non-nominal versus nominal geometries using contact algorithms. Vari-
ous numerical measurement algorithms have been implemented to ensure comparable deviation features 
to existing quality measurement methods. This enables later calibration with production data. Special 
feature is the blade thickness measurement in 3D. SoS algorithms/random fields have been used to cre-
ate realistic blade shapes based on only 2 variation parameters. A practical number of measurement 
points have been chosen to control the variability of the non-nominal geometries. With this information, a 
MOP solver can be set up using only a small number of non-nominal geometries. The MOP solver then 
easily creates a large number of certain types of non-nominal geometries, e.g. close to maximum toler-
ance geometries. This saves a lot of time compared to manual creation of a sufficient number of worst 
case geometries that can be used for up-following structural analysis processes. 
 
 
 
  



1 Introduction 

The goal was to develop a fully automatized procedure of generation of 3D-CAD geometries of turbo-
charger turbine wheels including different kind of real production imperfections. The procedure incorpo-
rates evaluation of particular deviations and differences from nominal blade geometry, hub body geome-
try and backface geometry. Since the turbine design is integrated, the blades and hub are a single part. 
The wheel is manufactured by investment casting, so different sources of deviations have to be consid-
ered. Tool tolerances, casting process parameters, shrinking of wax and metal during solidification and 
cooling as well as finishing process steps have influence on the final geometry. Each geometrical feature, 
like massive hub body or thin blade body, machined or unmachined surfaces have different deviations. In 
the numerical system, the process of deviations acquiring can be reproduced for many different virtual 
geometry designs and the space of designs’ deviations can be statistically evaluated. Based on these 
statistical evaluations it can be stated with quantified probability in which interval ranges the geometrical 
deviations occur.  

The original numerical simulation process for turbine wheels design has been split up into geometry gen-
eration and FEM analysis. Geometry generation needs to be parametrized to be able to set up an autom-
atized repeatable design generator. Utilizing a progressive technology of statistical metamodeling implicit-
ly included in optiSLang a statistical metamodel of optimal prognosis (MOP) describing relations between 
input parameters (geometry modification) and output parameters (geometry deviations) can be estab-
lished. Using such statistical metamodel as solver instead of geometry generation process the whole 
procedure can be increased rapidly. Incorporation of virtual simulations of geometrical deviation into the 
process of turbocharger development has a certain positive impact on better understanding of the devia-
tion causes and deviation statistical properties. This knowledge leads to better performing turbocharger 
design and elimination of unnecessary tight tolerances. On the other hand, robustness of several design 
features can be evaluated and improved. 
 
2 Contact-element based algorithm for tolerances evaluation 
Algorithms for deviations evaluation represent a core of the whole process. There were designed four 
different algorithms to measure four different types of deviations. Assuming production deviations it is 
necessary to measure distances between the external surfaces (see Fig. 11), thickness differences, 
curves and points distances. ANSYS classic environment was chosen for algorithms implementation for 
its robustness and wide variability in customization. Contact and target finite elements (designed and 
derived in ANSYS for performing nonlinear structural analysis) are used to determine distances between 
the defined surfaces (gaps resp. penetrations in terminology of ANSYS). Based on this feature differ-
ences between the nominal and design geometry are calculated and further processed. The results are 
available for all nodes of the FEM mesh, but it is advisable to pick a certain number of relevant nodes for 
the evaluation of production scatter. Interesting postprocessing nodes might be located either on edges 
that can be measured with tactile instruments or topological points that can also be checked by optical 
measurement systems. To be able to understand the system behaviour, a reasonable amount of nodes 
needs to be selected intelligently. Full surface results are nevertheless an interesting source of infor-
mation when selecting designs for further analysis. Through the use of numerical contact algorithms and 
distance calculation, they resemble the typical postprocessing results of optical 3D scans. 



 
Fig. 1 Example of external surfaces deviations on the blade and hub body 
 
3 Process integration 

As the core of the process is the deviation
it was a crucial task to set up the process of gaining the deviations from the moment of geometry creation 
in BladeGen and DesignModeler until the deviation values extraction automatic. It was the only wa
to post-process the results from hundreds (thousands) different designs. Some design features like blade 
thickness are exclusively defined in BladeGen, while others like fillet radi
DesignModeler. Both systems have their o
ometries, different exit conditions have to be recognized. These inherent properties of the task make it 
necessary to have a generic control system for the numerical process chain.
The key control system determining the ti
user to compose the sophisticated structure of particular actors representing the various actions that are 
supposed to happen during the flow run (see 

Fig. 2 Process flow in optiSLang 
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The process starts by the creation of the correlated input parameters set. Parameters are spatially corr
lated using the random fields’ technique (see 
fields secure that the geometrical deviations result in “reasonably
Designed blade surfaces with higher density of surface waves are not in compliance with turbochargers 
produced. Other parameters like blade length are generated randomly.  

 
Fig. 3 Example of random fields’ realizations (left), correlated thickness distributions (right) 
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Fig. 4 MOP for chosen response (left), coefficient of prognosis (right)
The process flow integration is based on win
 
4 Strategy of producing non-nominal geometries

The process described in chapter 3 can be performed as sensitivity (robustness) analysis. Results of 
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The process described in chapter 3 can be performed as sensitivity (robustness) analysis. Results of 
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1. Quantify the explainability of the o
2. Determine the dependencies between input and output parameters.
3. Statistical verification of the deterministic procedure.
4. MOP can be used as a substitutive solver.

 

Fig. 5 Strategy for deviations evaluation
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5 Sensitivity analysis 
Sensitivity analysis provides basic statistical properties of the inspected problem. As a first step a set of 
input and output parameters has to be defined. In
Using LHS it is possible to cover the desired design space (within the input parameters’ ranges) with a 
reduced number of samples (50-
designs expects extreme cases to be the most interesting. Therefore a non
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to statistical verification. 

5. MOP represents the mathematical dependencies between the inputs and outputs. Knowing these 
dependencies it is possible to use such statistical metamodel as a substitutive (significantly fas
er) solver. Results obtained from such a solver con

Quantify the explainability of the output parameters. 
Determine the dependencies between input and output parameters. 
Statistical verification of the deterministic procedure. 
MOP can be used as a substitutive solver. 

Strategy for deviations evaluation 

Utilizing MOP as solver it is possible to calculate a sufficient amount of designs in a reasonable time. 
Designs calculated this way are cross-checked by parallel performing of the full process. After collecting 
all the responses different responses’ filters are applied to create a space of allowable designs.

Sensitivity analysis provides basic statistical properties of the inspected problem. As a first step a set of 
input and output parameters has to be defined. In-between the functional dependencies are expected. 
Using LHS it is possible to cover the desired design space (within the input parameters’ ranges) with a 

-200, see Fig. 6). Structural mechanics evaluation of the non
designs expects extreme cases to be the most interesting. Therefore a non-centrally emphasized sa
pling is helpful. This is even more relevant when high nonlinearities are involved. The 
rameter may be much higher in a border area of the design space than in the center or on the opposite 
side. Information about this can only be available when the sampling combines boundary values of se
eral parameters at the same time. Therefore the higher number of samples is evaluated the better quality 
of statistical properties is to be expected. The dependence of the number of input parameters is low, but 
with a number of around 50 input parameters it is advisable to do at least 100 succ
LHS. To be able to achieve this even under the presence of instabilities, a larger number is requested in 

ang accordingly. The run can be aborted when the number of successful designs is reached. Pe
llowing valuable information is provided: 

Stability of designed process workflow (eventual manifestation of conflicts)
Relations between input and output parameters are determined 
Utilizing the MOP on the design space it possible to determine the importanc
rameters on each of the output parameters. Additionally the participation of the input parameters 
is quantified. Dependencies determined between inputs and outputs can be highly nonlinear as 

Obtaining high values of Coefficients Of Prognosis (COP) for the responses it is proofed that d
fined responses can be well explained by the defined input parameters. In an opposite case the 
reasons for low values of COPs should be considered. This way the whole process is subjected 

 
MOP represents the mathematical dependencies between the inputs and outputs. Knowing these 
dependencies it is possible to use such statistical metamodel as a substitutive (significantly fas
er) solver. Results obtained from such a solver contain a certain error expressed by the COP.

 

Utilizing MOP as solver it is possible to calculate a sufficient amount of designs in a reasonable time. 
checked by parallel performing of the full process. After collecting 

rs are applied to create a space of allowable designs. 

Sensitivity analysis provides basic statistical properties of the inspected problem. As a first step a set of 
ional dependencies are expected. 

Using LHS it is possible to cover the desired design space (within the input parameters’ ranges) with a 
). Structural mechanics evaluation of the non-nominal 

centrally emphasized sam-
pling is helpful. This is even more relevant when high nonlinearities are involved. The effect of one pa-
rameter may be much higher in a border area of the design space than in the center or on the opposite 
side. Information about this can only be available when the sampling combines boundary values of sev-

efore the higher number of samples is evaluated the better quality 
of statistical properties is to be expected. The dependence of the number of input parameters is low, but 
with a number of around 50 input parameters it is advisable to do at least 100 successful designs with 

er number is requested in 
ang accordingly. The run can be aborted when the number of successful designs is reached. Per-

Stability of designed process workflow (eventual manifestation of conflicts) 

Utilizing the MOP on the design space it possible to determine the importance of the input pa-
rameters on each of the output parameters. Additionally the participation of the input parameters 
is quantified. Dependencies determined between inputs and outputs can be highly nonlinear as 

rognosis (COP) for the responses it is proofed that de-
fined responses can be well explained by the defined input parameters. In an opposite case the 
reasons for low values of COPs should be considered. This way the whole process is subjected 

MOP represents the mathematical dependencies between the inputs and outputs. Knowing these 
dependencies it is possible to use such statistical metamodel as a substitutive (significantly fast-

tain a certain error expressed by the COP. 



     
Fig. 6 Variability of the parameterization 

Sensitivity analyses were successfully carried out either using the whole designed procedure or substitu-
tive MOP as solver. 
 
6 Metamodel of optimal Prognosis as Generator of non-nominal geometries 

The metamodel of optimal prognosis is a statistical metamodel containing special features suitable for 
using in a wide spectrum of probabilistic problems. As any statistical model it is able to predict the values 
of responses with a certain quality of approximation.  

The prediction quality of an approximation model may be improved if unimportant variables are removed 
from the model. This idea is adopted in the Metamodel of Optimal Prognosis (MOP) proposed in (Most 
and Will 2008) which is based on the search for the optimal input variable set and the most appropriate 
approximation model (polynomial or MLS with linear or quadratic basis). Due to the model independence 
and objectivity of the COP measure, it is well suited to compare the different models in the different sub-
spaces. 

As it is possible to reach high precision of MOP (quantified by COP) it is very convenient then to be used 
as a substitutive solver representing dependencies between input and output qualities. In case of the 
presented process of a turbine wheel’s deviations calculation it takes about 25-30 minutes to complete 
one design containing unique geometry variation. The main fraction of this time is used for distance calcu-
lation between thousands of nodes, but also the geometry generation in DesignModeler is costly due to 
the interface with BladeGen on the one hand and 3D fillet generation on the other hand. After solving a 
sufficient amount of various wheel designs (in this case ca. 120) and building up the metamodel over the 
design space it was stated that over 90% of output parameters have prognosis coefficients (COP) higher 
or equal than 85% (see Fig. 4). Based on this knowledge it was feasible to use MOP as a substitutive 
solver with the expectation of obtaining reasonable results’ quality. Utilizing MOP as solver in the process 
workflow caused dramatic acceleration in design realization performance. Compared to full process work-
flow the speed-up with MOP is 1000x and more. Due to such a speed-up it was possible to carry out sen-
sitivity (robustness) analysis containing 2000 designs and more in less than 1 hour. This performance 
gained significantly higher amount of designs than it would be possible only with full workflow which 
brought into the light valuable statistical information about the relations between the geometry variations 
and appropriate deviations.  
 
 



7 Filters 

One of the consequences resulting from MOP utilization is the higher amount of produced output data. To 
get an overview of design realization scattering there exist many ways of data postprocessing. Hist
grams of frequencies of occurrence (
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tion is attributed probability of response occurrence in a specified continuous interval can be easily d
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Fig. 7 Statistical distribution attribution
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By the application of the formerly described filter on the design space only the d
tions for all the responses remain. The others are considered to be invalid. The primary deficiency of this 
basic filtering technique is the fact that a design can be only valid (status=1) or invalid (status=0) and it is 
not known how many responses have violated the allowable bounds for each design by how much. In 
order to obtain the information  how many responses have violated the bounds for each design to be able 
to estimate if the violation is only local or if it occurs at la
(in optiSLang4) which contains a Python function summing up the violations for each design. The a
vantage is deeper insight into the probability of limit violations occurrence. An example of another useful 
filter is the “two belts filter”. Also, a certain tolerance on the allowed deviations of 20% has been intr
duced. The purpose of this filter is to sort out all the designs with responses outside the two defined inte
vals (see Fig. 8).  
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Fig. 8 Example of “two belts filter”

Filters based on constraining equations can be implemented either in GUI using predefined interface or 
the Python scripts can be prepared in advance and later on
opportunity of using Python scripts at any
ration of higher amount of responses, conditions, parameters etc.
 
8 Summary 

The process of turbine geometry generation incorporates various geometry parameters participating on 
geometry definition in BladeGen and subsequently in 
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