
11. Weimarer Optimierungs- und Stochastiktage – 06.-07. November 2014 1 

Robust Automotive Suspension Design Using Adaptive 

Response Surface Based Multi-Objective Optimization 

Paul Tobe Ubben
1*

, Jürgen Haug
1
, Dieter Bestle

2 

1
 Daimler AG - Group Research & Advanced Engineering, Sindelfingen, Germany 

2
 BTU - Engineering Mechanics and Vehicle Dynamics, Cottbus, Germany 

Abstract 

Deterministic optimization is used in all fields of engineering, especially in early design 

processes based on digital prototypes and simulation. A major disadvantage of deterministic 

optimization is the unknown robustness of the found solution against uncertainties of system 

parameters. Therefore, the Robust Design Optimization (RDO) concept as combination of 

Robustness Analysis (RA) and deterministic optimization was developed. In this paper, such 

an approach is applied to the optimization of a suspension for passenger cars w.r.t. typical 

driving maneuvers. The suspension behavior has to be robust against uncertainties without 

defining strict limits or safety margins. The coupled multi-objective RDO procedure will find 

a Pareto-front w.r.t. mean value and variance of chosen objectives. As a result, a specific 

compromise regarding system robustness and mean performance may be chosen from this 

Pareto-set. To overcome the vast amount of CPU-time, required  for expensive direct function 

evaluations, an adaptive response surface method (aRSM) is integrated. The overall process 

then consists of an inner loop involving a multi-objective evolutionary algorithm based on 

response surfaces and an outer loop, where metamodeling is performed on a set of support 

points. This set is initialized in the first iteration step and updated afterwards by picking 

promising designs from the Pareto-fronts of the surrogate model, which are then evaluated 

exactly. 
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1 Introduction 

Since decades, automotive experts have gained a profound level of knowledge in the field of 

conventional suspension design leading to a high degree of maturity of current car 

suspensions. To realize further improvements, it is inevitable to increase complexity by 

introducing more sophisticated designs. In parallel, the needs with respect to robustness are 

dramatically increasing due to a still growing number of derivatives on the one hand and a 

wider spectrum of wheel load variations by introducing electric batteries for plug-in and pure 

electrically driven cars on the other hand. Under these circumstances, optimal solutions are 

hard to find by human search. Computer-based optimization used in the digital phase of 

suspension development may help to improve insight into the system and to realize better 

designs. 

In literature most publications are related to deterministic optimization of vehicle suspensions, 

whereas RDO is seldomly used yet. Most RDO procedures are based on response surface 

modeling (RSM) applied in different ways to cut down evaluation effort. In cases where only 

design parameters are scattering, it may be appropriate to build up a global metamodel. 

Design objectives can then be evaluated based upon the metamodel, and especially the time-

consuming determination of robustness measures can be speeded up remarkably. 

Nevertheless, excellent approximation quality is necessary to obtain trustworthy results as 

discussed by Most and Will [1]. Cheng and Lin [2] use such a non-adaptive global metamodel 

for multi-objective robust suspension design w.r.t. joint position and manufacturing errors of 

joint positions. Objectives are mean value and variance of characteristic suspension specific 

values. The metamodel is based on an initial sample obtained by a Design of Experiments 

(DOE) method. Kang et al. [3] and Park et al. [4] added an adaptive strategy. The objective’s 

mean values and standard deviations are weighted and summed up in order to get a single-

objective RDO. Optimization is performed on the metamodel, and the found optimal design is 

originally evaluated and added to the set of sample points for updating the metamodel. This 

procedure is repeated until a convergence criterion is fulfilled or a maximum number of 

iterations is reached. Yang et al. [5] use a similar approach where a so called dual-response 

surface method is chosen to approximate mean value and variance separately. Another way to 

profit from metamodels is to use them just as local approximations to improve evaluation of 

robustness measures as presented by Busch and Bestle [6]. For each deterministic design, a 

sample of uncertain parameters is generated and a metamodel is built up. Based on this 

model, robustness analysis is performed with a huge number of samples. The number of 

costly direct function evaluations is reduced dramatically and it could be shown that the 

estimation quality of mean value and variance even increases. 

The mentioned investigations focus on optimizing a single car in the presence of uncertainties 

such as customer loading or manufacturing tolerances. Besides optimizing individual car 

suspensions, however, it is also desirable to ensure consistent ride and handling behavior for a 

whole car segment including different engines, extra equipment, plug-in batteries and 
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customer loading. Thus, a suspension should be designed such that it can be used in several 

derivatives such as sedans, station wagons, coupes, etc. This may be achieved by using RDO 

as will be shown by an approach based on optiSLang [7]. 

This paper is organized as follows: In Section 2, a brief overview of different RDO 

approaches is given. A specific RDO process is chosen and explained in detail in Section 3, 

where its functionality is shown by application to a test function. In chapter 4 the developed 

process is adapted for designing a car suspension for a given set of design parameters and 

uncertainties. Finally, the results of the proposed RDO process are summarized and a 

conclusion is given. 

2 Robust Design Optimization 

Generally, RDO is an optimization performed under consideration of uncertainties. Typical 

tasks are to optimize a given objective while fulfilling constraints with a specified safety 

margin or minimizing the variance of the objective with respect to uncertainties. RDO can be 

divided into stochastic design optimization and fuzzy logic, where the present work focuses 

on stochastic design optimization consisting of variance-based analysis and probability-based 

analysis [8]. The selection of one of these techniques depends on the specific area of 

application. Probability-based analysis is recommended for system design where a specific 

and very low failure probability is needed. Variance-based analysis can be used to prove 

safety margins up to three sigma with an affordable number of samples [1]. This paper 

focuses on variance-based methods. Therefore, subsequently speaking of RDO refers to this 

kind of RDO technique. 

In literature two general variance-based RDO procedures can be found: an integrated 

approach, also known as coupled procedure, and an iterative approach [1][9]. In the 

following, both strategies will be discussed and reasons for the selection w.r.t. the specific 

field of application will be given. 

Iterative RDO firstly performs a deterministic optimization without taking robustness 

measures into account, and robustness evaluation is only done afterwards. In this procedure 

robustness is usually considered by introducing safety factors which need to be fulfilled. If a 

deterministic optimum is infeasible by violating one of the predefined robustness dependent 

constraints, safety factors are updated in order to get a feasible optimum in the next iteration 

step. This is repeated until a maximum number of iterations is reached or a convergence 

criterion is fulfilled. Figure 1a shows a flowchart of the procedure. The benefit of this 

iterative process is that robustness analysis is performed only once in each outer iteration 

loop, namely for the deterministic optima. The main drawback is, however, that it is 

impossible to achieve a robust design in terms of minimizing robustness measures, e.g. 

response variances. 

If robustness measures are used during optimization already, the procedure is considered as 

integrated RDO. For each design generated by the optimization algorithm a robustness 

evaluation is performed according to Figure 1b. Hence, the possibility of taking robustness 
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constraints into account while optimizing response variances and mean values is given. 

Besides having more options to set up the RDO task, this procedure needs a vast amount of 

CPU-time for expensive direct function evaluations. Hence, an efficient design evaluation 

process is needed if time-consuming simulations are involved. 

In the present work robustness is required in terms of minimizing the variance of model 

responses without having constraints such as strict safety margins. Therefore, the integrated 

RDO procedure is chosen, although more effort has to be spend on cutting down the number 

of direct function evaluations.  

3 Adaptive Response Surface Based RDO 

As mentioned above, RSM is an opportunity to minimize the amount of CPU-time needed for 

the RDO process. Here, an adaptive response surface (aRS) based multi-objective RDO is 

used and explained in the following. 

deterministic 
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robust design

optimum
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Figure 1: Iterative (a) and integrated (b) RDO procedure 
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3.1 Extended Problem Formulation 

The goal is to optimize a system in terms of minimizing mean and standard deviation of an 

objective function 𝑓(𝒑; 𝒓) with a given set of ℎ design parameters 𝑝𝑖 summarized in design 

vector 𝒑  between some bounds 𝒑𝑙 , 𝒑𝑢  and with normally distributed stochastic variables 

𝒓~𝑁(𝝁𝑟, 𝜮𝑟) with mean 𝝁𝑟 and covariance matrix 𝚺𝑟 representing uncertainties. Hence, the 

RDO problem may be formulated as 

 𝑚𝑖𝑛
𝒑∈𝑃

𝑓(𝒑; 𝒓)  𝑠. 𝑡.  𝑃 = {𝒑 ∈ ℝℎ|𝒑𝑙 ≤ 𝒑 ≤ 𝒑𝑢}. (1) 

Here the integrated RDO procedure described above is used where the stochastic variables 𝒓 

are eliminated by searching simultaneously for good mean performance 𝜇𝑓(𝒑) = 𝐸[𝑓(𝒑; 𝒓)] 

and low scatter 𝜎𝑓(𝒑) = √𝐸 [(𝑓(𝒑; 𝒓) − 𝜇𝑓)
2
]. This yields a bi-criterion problem 

 𝑚𝑖𝑛
𝒑∈𝑃

𝒇𝑅𝐷𝑂(𝒑)  𝑠. 𝑡.  𝑃 = {𝒑 ∈ ℝℎ|𝒑𝑙 ≤ 𝒑 ≤ 𝒑𝑢} (2) 

where 

 
𝒇𝑅𝐷𝑂(𝒑) ≔ [

𝜇𝑓
𝜎𝑓
]. (3) 

The solution process consists of two parts: An initial sampling and the main RDO loop 

consisting of different process steps, see Figure 2. In the first part a predefined number of 

sample designs 𝒑𝑗 are generated. To avoid purely distributed inputs, particularly for a small 

amount of samples, advanced Latin Hypercube Sampling (aLHS) [10] is used supplemented 

by a single-switch-optimized method for reducing correlation errors. The resulting set of 

sample points acts as set of support points 

 
𝑆(𝑖) = {𝒑𝑗, 𝑗 = 1… 𝐽

(𝑖)} (4) 

for generating response surfaces , where 𝑖 = 0 for the initial set.  

In the first step of the main RDO loop, response surfaces �̂�𝑅𝐷𝑂(𝒑) = 𝒇𝑅𝐷𝑂(𝒑) + 𝜺(𝒑) are 

built up from the actual set of support points 𝒑𝑗 ∈ 𝑆
(𝑖)  and associated function values 

𝒇𝑗
𝑅𝐷𝑂 = 𝒇𝑅𝐷𝑂(𝒑𝑗). Estimation of 𝒇𝑅𝐷𝑂(𝒑𝑗) according to Equation (3) requires a sample for 

the stochastic variables 𝒓 which is generated in the same way as initial designs 𝒑𝑗 ∈ 𝑆
(0) by 

using aLHS, but based on a predefined probability density function. 

For approximation purpose the metamodel of optimized prognosis (MoP) is used [11]. Briefly 

said, MoP is an automatic approach which searches for the best response surface technique 

for a given dataset with respect to a specific validation method. Currently polynomial least 

squares approximation, moving least squares and ordinary Kriging are implemented in 

optiSLang [12]. 

After generating the metamodels, the optimization problem (2) is solved on the response 

surfaces: 
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 𝑚𝑖𝑛
𝒑∈𝑃

�̂�𝑅𝐷𝑂(𝒑)  s. t.  𝑃 = {𝒑 ∈ ℝℎ|𝒑𝑙 ≤ 𝒑 ≤ 𝒑𝑢}. (5) 

A global evolutionary optimization algorithm based on the Strength Pareto Evolutionary 

Algorithm (SPEA2) [13] is used. The algorithm generates a Pareto-front of optimal 

compromises between low mean value 𝜇𝑓  and low scatter 𝜎𝑓  dominating the remaining 

designs. The algorithm finishes if a predefined number of iterations is reached or the archive 
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Figure 2: aRS based RDO process 
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of non-dominated individuals stagnates. The result of the optimization is a set of non-

dominated compromise designs 𝒞 = {𝒑𝑘
𝑃, 𝑘 = 1…𝐾}  and a remaining set of dominated 

designs 𝒟 = {𝒑𝑘
𝐷 , 𝑘 = 1… �̅�}  which is usually of no interest, but may be used here as 

explained later. 

In the next step, proper sample points for the adaption of the response surfaces have to be 

selected, which is done according to Figure 3. At first, minimum distances between non-

dominated designs 𝒑𝑘 ∈ 𝒞 and all points of actual set 𝑆(𝑖  ) ≔ 𝑆(𝑖) are calculated: 

 𝑑(𝒑𝑘) ≔ 𝑑𝑖𝑠𝑡(𝒑𝑘, 𝑆
(𝑖  )) ≔ min

𝒑𝑗∈𝑆
(𝑖+1)

‖𝒑𝑘 − 𝒑𝑗‖. (6) 

The design 𝒑𝑘∗  with the maximum distance 𝑑(𝒑𝑘∗) is then chosen as a new potential RS 

support point and removed from the set of non-dominated designs 𝒞. In order to prevent 

selection of new support points lying too close to others or being even identical to an already 

existing support point, a characteristic distance �̂�  is introduced. For defining such a 

characteristic distance, assume normalized design variables 𝑝𝑖 ∈ [0,1] and a unit hypercube in 

the ℎ-dimensional design space filled evenly with 𝐽 = 𝑛 
ℎ points where 𝑛 ≥ 2. In this case, 

the minimum distance between neighboring points is �̂� = 1 (𝑛 − 1)⁄ = 1 (√𝐽
ℎ − 1)⁄ . On the 

long term, however, points of the set 𝑆(𝑖) will settle down to the Pareto-set which generally 

has one dimension less than the design space and doesn’t range over the full design space. 

𝑆 𝑖  ≔ 𝑆 𝑖

𝑛 ≔ 0

𝒑𝑘∗ =    m  
𝒑 ∈𝒞

𝑑𝑖𝑠𝑡 𝒑𝑘, 𝑆
𝑖  

𝒞 ≔ 𝒞 {𝒑𝑘∗}

𝑑𝑖𝑠𝑡 𝒑𝑘∗ , 𝑆
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𝑛 ≔ 𝑛 + 1

 𝑓 ≔ 0
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Figure 3: Determination of new support points to update 𝑆(𝑖)  𝑆(𝑖  ) 
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Thus, ℎ needs to be substituted by (ℎ − 1) and the characteristic distance may be defined as 

 �̂�(𝐽(𝑖)) ≔
𝑎�̂�

√𝐽(𝑖)
ℎ−1

− 1
 (7) 

where 𝐽(𝑖) = |𝑆(𝑖)| is the actual number of support points, and 𝑎�̂�  0 is a measure of the 

extent of the Pareto-set to be used as a user-defined tuning factor. If the distance 𝑑(𝒑𝑘∗) of 

the potential support point is larger than �̂�, 𝒑𝑘∗  is added to the set of support points 𝑆(𝑖  ) and 

the process repeats until a predefined number 𝑁 of new support points are found. However, if 

the distance is too small, the set of non-dominated designs 𝒞  is extended by the set of 

dominated designs 𝒟, forcing the algorithm to globally update the metamodel. In case that no 

more sample points are available, meaning 𝒞 is empty, only the 𝑛 support points found so far 

are used for RS update. However, if no support point could be found at all, i.e., 𝑛 = 0, an 

error rate  𝑓 is set to zero and used as convergence criterion as will be discussed later. 

After updating the set of support points, original design evaluation is performed for all new 

support points. Based on the new set 𝑆(𝑖  ), response surfaces are built up and the RDO loop 

in Figure 2 repeats until a maximum number of iterations or a convergence criterion is 

fulfilled. To check for convergence, approximation quality of the new support points is 

assessed in the criterion space, meaning that the relative differences between objective values 

gained from response surfaces �̂�𝑅𝐷𝑂 and originally evaluated values 𝒇𝑅𝐷𝑂 are assessed: 

 
 𝑓 = m  

𝑙∈{ …𝑚},𝒑 ∈𝑆
(𝑖+1) 𝑆(𝑖)

|𝑓𝑙
𝑅𝐷𝑂(𝒑𝑘) − 𝑓𝑙

𝑅𝐷𝑂(𝒑𝑘)|

m  {|𝑓𝑙
𝑅𝐷𝑂(𝒑𝑘)|, |𝑓𝑙

𝑅𝐷𝑂(𝒑𝑘)|}
 (8) 

where 𝑚 is the number of 𝒇𝑅𝐷𝑂-objectives. If this error rate  𝑓 is smaller than a predefined 

error tolerance  𝑡𝑜𝑙 , the algorithm is assumed to be converged and the RDO procedure 

finishes, see Figure 2. 

3.2 Test Function 

Functionality and efficiency of the proposed process may be proven by using a simple test 

function. For this purpose, a function [14] is chosen where deterministic and robust optima 

can be easily recognized and which can be evaluated rather quickly. The problem formulation 

is similar to Equation (1) where 

 
𝑓(𝒑; 𝒓) =∑𝑓𝑠𝑖𝑚𝑝𝑙𝑒(𝑝𝑖 + 𝑟𝑖)

2

𝑖= 

 (9) 

and 

 

𝑓𝑠𝑖𝑚𝑝𝑙𝑒(𝑥) = {
cos

𝑥

2
+ 1 𝑓𝑜𝑟 − 2𝜋 ≤ 𝑥  2𝜋,

1.1 cos(𝑥 + 𝜋) + 1.1 𝑓𝑜𝑟      2𝜋 ≤ 𝑥  4𝜋,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (10) 

The stochastic variables 𝑟𝑖  are uncorrelated and normally distributed with zero mean and 

variance σ𝑖
2 = 0.164. They are truncated at ±2𝜎𝑖. The problem formulation (2), (3) for the 
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aRS based RDO procedure is then applied as presented above, but with the exception that the 

mean value is maximized: 

 

[
m  
𝒑∈𝑃

𝜇𝑓(𝒑)

min
𝒑∈𝑃

𝜎𝑓(𝒑)
]  𝑠. 𝑡.  𝑃 = {𝒑 ∈ ℝ2|−2π ≤ 𝑝i ≤ 4π}. (11) 

A visualization of equation (9) is shown in Figure 4 for 𝑟𝑖 ≡ 0. 

For solving problem (11), firstly the direct integrated RDO procedure shown in Figure 1b is 

applied. For each design point 𝒑𝑗  the robustness evaluation is performed with 20 sample 

points 𝒓. The SPEA2 algorithm converges after 2010 design evaluations 𝒑𝑗  with a total of 

2010 × 20 = 40200 function calls resulting in Pareto optimal designs highlighted as white 

circles in Figure 5a. Obviously there are three non-dominated Pareto optimal designs. The 

design with the best mean value (upper right white circle) has the worst variance and can 

easily be identified in Figure 4 as the global maximizer 𝒑 = [3𝜋, 3𝜋]𝑇 which has the largest 

change of slopes in the neighborhood resulting in a high variance. On the contrary, the design 

with the best variance (lower left white circle) may be identified as local maximizer 𝒑 = 𝟎 

with the lowest change of slopes in the surrounding, whereas the intermediate solution 

belongs to one of the two other local maximizers 𝒑 = [3𝜋, 0]𝑇 or 𝒑 = [0,3𝜋]𝑇 in Figure 4.  

The same problem is then solved via the RDO process using adaptive RSM. The optimization 

now requires only 180 designs 𝒑𝑗 as support points for the metamodel with a total of 180 ×

20 = 3600 direct function calls, which is an increase of efficiency of 91%. An anthill plot of 

the performed RDO can be seen in Figure 5b where support points for the RS are visualized 

𝑓(𝒑)

𝑝 
𝑝2

−2𝜋−2𝜋

4𝜋
4𝜋
0

4.4

Figure 4: Visualization of the test function (9) for 𝒓 = 𝟎 
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as black dots and all designs used by SPEA2 and computed with the RS are shown as grey 

dots. Obviously the same important regions are explored resulting in the white circles 

representing Pareto-optimal designs. Only small deviations in the variance occur, which may 

be explained by the small sample size for 𝒓 used for determining mean value and variance. 

The area which is of no interest shows a poor occurrence of black dots compared to Figure 5a. 

This is due to the proposed aRSM procedure where usually only intermediate Pareto-optimal 

designs are chosen as new support points. Hence, the increase of approximation quality of the 

RS focuses on these areas, whereas unimportant regions are not updated too often. 

4 Application to Suspension Design 

After successful demonstration, the proposed method may now be applied to robust design of 

a suspension of a full vehicle model. The vehicle, a luxury passenger car, is modeled as a 

multibody system (MBS) with 112 rigid bodies and 111 degrees of freedom (DOF). Model 

components are suspension links, wheel carriers, bushings, spherical joints, springs and 

dampers, wheels and tires, a steering system, a subframe at the rear axle and the main body, 

leading to a complex model with a huge number of DOFs as mentioned above. Two different 

comfort oriented loadcases are investigated, which will be explained later. The main goal is to 

find a bushing setup which has the best robust performance w.r.t. to the specific objectives 

and uncertainties. The uncertainties shall emulate different car derivatives which have the 

same track width, wheelbase and kinematic hardpoints, but different mass and size. 

𝜎𝑓 𝜎𝑓 

𝜇𝑓 𝜇𝑓 0 
0 

0.13 

0 
0 

4.4 4.4 

0.13 
(a) (b) 

Figure 5: Evaluated designs in criterion space obtained with direct evaluation (a) and aRSM 

               approach (b) 
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4.1 Design Goals 

Design goals are to minimize the oscillation intensities of two typical driving maneuvers. The 

first loadcase is called axle tramp which is a coupled oscillation between wheel and axle 

appearing while a car is accelerating or braking. In this paper only axle tramp during braking 

is investigated. Depending on axle kinematics, the wheel moves backwards and upwards due 

to the applied braking force 𝐹𝐵, which leads to a loss of road contact 𝐹𝑊𝐿 and thus reduces the 

friction force on the tire. This, however, lets the wheel swing back gaining more road contact 

again. Repetition results in the oscillation illustrated in Figure 6. The most sensitive 

parameters for this scenario are tire mass and stiffness as well as bushing stiffness and 

damping where a certain amount of damping should be realized in particular. 

To get a reproducible axle tramp behavior in the simulation, an initial vertical force impulse is 

applied to the rear wheels while the car is braking. The resulting longitudinal and vertical 

accelerations of the rear wheels in time-domain are squared, integrated and chosen as 

characteristic responses to be minimized. In order to overcome the misleading influence of the 

steady acceleration due to braking, the mean longitudinal acceleration of each wheel is 

subtracted in criteria 𝑓  and 𝑓2: 

 
𝑓 = ∫(�̈�𝑊,𝑟 − �̅̈�𝑊,𝑟)

2
𝑑𝑡 , 𝑓2 = ∫(�̈�𝑊,𝑙 − �̅̈�𝑊,𝑙)

2
𝑑𝑡, 

𝑓3 = ∫ �̈�𝑊,𝑟
2𝑑𝑡 , 𝑓4 = ∫ �̈�𝑊,𝑙

2𝑑𝑡. 

(12) 

In the second loadcase the vehicle is driving with constant speed on a straight road while a 

single step-shaped roadway excitation occurs at the rear axle. Here, the acceleration of the 

driver’s seat in opposite driving direction is investigated in time-domain and should be 

minimized. Especially the first acceleration peak can be recognized by passengers and 

𝑧

𝑥

𝐹𝐵 𝐹𝑊𝐿

   𝑟

Figure 6: Schematic tire movement during tramp oscillation 
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therefore is of particular interest. The response is calculated similar to the others shown 

above: 

 
𝑓5 = ∫ �̈�𝑆

2𝑑𝑡. (13) 

To minimize the seat acceleration in x-direction, the axles should provide enough longitudinal 

compliance and little damping. 

For each of these response criteria mean value and variance are calculated as presented in 

Section 3.1, normalized w.r.t. a reference car, and partly summed up to finally achieve two 

objectives for each loadcase: 

 
𝜇 =∑

𝜇𝑓𝑖
𝜇𝑓𝑖,𝑟𝑒𝑓

4

𝑖= 
, 𝜎 =∑

𝜎𝑓𝑖
𝜎𝑓𝑖,𝑟𝑒𝑓

4

𝑖= 
, 

𝜇2 =
𝜇𝑓5
𝜇𝑓5,𝑟𝑒𝑓

, 𝜎2 =
𝜎𝑓5
𝜎𝑓5,𝑟𝑒𝑓

. 

(14) 

The different needs of both loadcases regarding stiffness and damping should lead to 

compromised bushing setups forming a Pareto-front. These tradeoffs are hard to find by 

human search which is why the proposed computer based optimization procedure will be 

used. 

4.2 Design Parameters 

The stiffness and damping characteristics of the suspension bushings are chosen as design 

parameters, where the bushings are represented by a Kelvin-Voigt (KV) model as shown in 

Figure 6. This model is rather limited in terms of approximating real bushing behavior, but it 

needs only two parameters which is rather efficient. The main drawback is that it is not able to 

reproduce the amplitude and frequency dependency of rubber material used for vehicle 

bushings [15]. Figure 7 shows the frequency dependent behavior 𝐺(𝑖𝜔) of a measured real 

bushing in comparison to the KV model where 𝑐𝑑𝑦𝑛 = |𝐺(𝑖𝜔)|  and 𝜑 = ∢𝐺(𝑖𝜔) . To 

overcome this lack of approximation quality, the KV model is parametrized to match the real 

bushing behavior only for a specific excitation frequency 𝑓𝑒 ∈ [0, 𝑓]. This is possible since the 

two considered loadcases, i.e., axle tramp and free vibration after obstacle crossing, have well 

defined excitation frequencies 𝑓𝑒, respectively. 

Let 𝑐𝑑𝑦𝑛
𝑟𝑒𝑓
(𝑓𝑒) and 𝜑𝑟𝑒𝑓(𝑓𝑒) be the dynamic stiffness and loss angle of a reference bushing 

obtained from measurements, see Figure 7. Then the characteristic of 𝑐𝑑𝑦𝑛
𝑟𝑒𝑓

 for different 

excitation frequencies 𝑓𝑒 can be expressed by a factor 𝑘 (𝑓𝑒) = 𝑐𝑑𝑦𝑛
𝑟𝑒𝑓
(𝑓𝑒 )/𝑐

𝑟𝑒𝑓  representing 

the amount of dynamic hardening w.r.t. static stiffness 𝑐𝑟𝑒𝑓 ≔ 𝑐𝑑𝑦𝑛
𝑟𝑒𝑓 (0). For the actual car 

design, only the static stiffness of the bushing 𝑐∗ ≔ 𝑐𝑑𝑦𝑛(0) is changed as design variable, 

whereas the hardening characteristic is kept constant. Then the dynamic stiffness for a given 

excitation frequency may be calculated as 𝑐𝑑𝑦𝑛(𝑓𝑒) = 𝑐
∗𝑘 (𝑓𝑒) . Since the frequency 

dependence of the loss angle 𝜑𝑟𝑒𝑓(𝑓𝑒) is small compared to the change in dynamic stiffness, 
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see Figure 7, it is assumed to be independent of 𝑓𝑒  for this optimization. Thus, the actual 

design parameter 𝜑∗ is used for all frequencies, i.e., 𝜑(𝑓𝑒) ≈ 𝜑
∗. For simulation of axle tramp 

and obstacle crossing, the actual frequencies 𝑓𝑒 are identified and the corresponding values 

𝑐𝑑𝑦𝑛(𝑓𝑒) and 𝜑(𝑓𝑒) are computed form the bushing design variables 𝑐∗, 𝜑∗ and the hardening 

characteristic 𝑘 (𝑓𝑒). Then these values are converted to corresponding values of stiffness 𝑐 

and damping 𝑑 of KV model force 

 
𝐹(𝑡) = 𝑐𝑥(𝑡) + 𝑑�̇�(𝑡). (15) 

In order to find proper transformation equations, we firstly apply Laplace-Transformation 

𝐹(𝑠) = ℒ{𝐹(𝑡)} to Equation (15) where 𝑠 = 𝑖𝜔 = 𝑖2𝜋𝑓𝑒 . This results in the transfer function 

 
𝐺(𝑖𝜔) =

𝐹(𝑖𝜔)

𝑥(𝑖𝜔)
= 𝑐 + 𝑖𝑑𝜔 (16) 

of the KV model. Dynamic stiffness 𝑐𝑑𝑦𝑛 and loss angle 𝜑 of the KV model are then defined 

as  

 
𝑐𝑑𝑦𝑛
𝐾𝑉 (𝜔) = |𝐺(𝑖𝜔)| = √𝑐2 + 𝑑2𝜔2, 𝜑𝐾𝑉(𝜔) = ∢𝐺(𝑖𝜔) =   ct n (

𝑑𝜔

𝑐
). (17) 

Inverting these two equations for given 𝑐𝑑𝑦𝑛 and 𝜑 finally results in equivalent values for 𝑐 

and 𝑑 used in the KV model matching the real bushing behavior at the specified excitation 

frequency: 

 
𝑐 = 𝑐𝑑𝑦𝑛 cos 𝜑 = 𝑐

∗𝑘 (𝑓𝑒)𝑐𝑜𝑠𝜑
∗, 𝑑 =

𝑐𝑑𝑦𝑛 sin 𝜑

2𝜋𝑓𝑒
=
𝑐∗𝑘 (𝑓𝑒)𝑠𝑖𝑛𝜑

∗

2𝜋𝑓𝑒
. (18) 

𝜑∗

𝑐∗ = 𝑐𝑑𝑦𝑛(0)

𝑐𝑑𝑦𝑛

𝑐𝑟𝑒𝑓 = 𝑐𝑑𝑦𝑛
𝑟𝑒𝑓
(0)

𝜑

𝑓𝑒0 𝑓𝑓𝑒0 𝑓

𝑐𝑑𝑦𝑛
𝐾𝑉

𝑐𝑑𝑦𝑛 𝑓𝑒 = 𝑐∗𝑘 (𝑓𝑒)

𝑐𝑑𝑦𝑛
𝑟𝑒𝑓

𝑓𝑒 = 𝑐𝑟𝑒𝑓𝑘 (𝑓𝑒)

𝜑𝐾𝑉

𝜑(𝑓𝑒)

𝜑𝑟𝑒𝑓(𝑓𝑒)

Figure 7: Comparison of Kelvin-Voigt model (black) and real bushing behavior (grey) 
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In total the vehicle model has 10 bushings, where here only translational bushing 

characteristics are changed. Therefore, 60 parameters, precisely 𝑐∗ and 𝜑∗ for each coordinate 

direction of each bushing, may be considered. To minimize the amount of design parameters, 

a sensitivity analysis was performed resulting in only 11 important parameters summarized in 

design vector 

 𝒑 = [𝑐 ,𝑥
∗ , 𝜑 ,𝑥

∗ , 𝑐 ,𝑧
∗ , 𝜑 ,𝑧

∗ , 𝜑2,𝑥
∗ , 𝜑3,𝑥

∗ , 𝑐3,𝑧
∗ , 𝜑3,𝑧

∗ , 𝜑4,𝑥
∗ , 𝑐4,𝑧

∗ , 𝜑4,𝑧
∗ ]

𝑇
.  (19) 

    K1        K2  K3  K4 

The associated bushings and their individual coordinate systems 𝐾1 to 𝐾4 are visualized in 

Figure 8. Loss angle values 𝜑∗ are varied between 1° and 10° and static stiffness values 𝑐∗ 

between 0.8𝑐𝑟𝑒𝑓 and 1.2𝑐𝑟𝑒𝑓 resulting in bounds 

 𝒑𝑙 = [0.8𝑐 ,𝑥
𝑟𝑒𝑓
, 1°, 0.8𝑐 ,𝑧

𝑟𝑒𝑓
, 1°, 1°, 1°, 0.8𝑐3,𝑧

𝑟𝑒𝑓
, 1°, 1°, 0.8𝑐4,𝑧

𝑟𝑒𝑓
, 1°]

𝑇
, 

𝒑𝑢 = [1.2𝑐 ,𝑥
𝑟𝑒𝑓
, 10°, 1.2𝑐 ,𝑧

𝑟𝑒𝑓
, 10°, 10°, 10°, 1.2𝑐3,𝑧

𝑟𝑒𝑓
, 10°, 10°, 1.2𝑐4,𝑧

𝑟𝑒𝑓
, 10°]

T
. 

(20) 

The optimization is performed using normalized design variables 

 
𝑝𝑖
∗ =

𝑝𝑖 − 𝑝𝑖,𝑙
𝑝𝑖,𝑢 − 𝑝𝑖,𝑙

∈ [0,1], 𝑖 = 1,… ,11.  (21) 

𝐾3
𝑥

𝑧

𝐾4
𝑥

𝑧

𝐾1
𝑥

𝑧

𝐾2
𝑥

𝐾3𝑥

𝑧 𝐾4𝑥

𝑧
𝐾1

𝑥

𝑧

𝐾2

𝑥

(a) (b)

driving direction

𝑧

𝑥

 

𝑥

Figure 8: Side (a) and top view (b) of investigated rear axle with wheel carrier (grey), 

      linkages (black), bushings (white circles) and subframe (gray dashed) 
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4.3 Uncertainties 

A passenger car underlies several uncertainties. In this paper scatter of mass properties of 

loading and bodies is investigated. More precisely, variation of passenger numbers, fuel level, 

boot loading, extra equipment, engine and battery type are taken into account where positions 

are assumed to be given according to Figure 9. All these variations lead to a change of masses 

summarized in an uncertainty vector 

 
𝒓 ≔ [𝑚𝑃 ,𝑚𝑃2, 𝑚𝑃3, 𝑚𝑃4, 𝑚𝐸 , 𝑚𝐹 , 𝑚𝑇 , 𝑚𝐵, 𝑚𝐸𝑄]

𝑇
 (22) 

where 𝑚𝑃  to 𝑚𝑃4 refer to passenger masses, 𝑚𝐸 to the engine mass, 𝑚𝐹 to the fuel mass, 𝑚𝑇 

to the trunk mass, 𝑚𝐵  to the battery mass, and 𝑚𝐸𝑄  to mass of extra equipment. The 

uncertainty vector 𝒓 is varied between the following bounds: 

𝒓𝑙 = [40,0,0,0,130,0,0,0,0]
𝑇 , 𝒓𝑢 = [100,100,100,100,215,70,50,115,170]

T. (23) 

Mass variations have direct influence on mass properties of the car body, namely overall mass 

𝑚𝐶𝐵 center of gravity (CG) position 𝒔𝐶𝐵 and inertia tensor 𝑰𝐶𝐵, which can be calculated w.r.t. 

the overall CG using the parallel axes theorem [16]. 

Due to lack of statistics for the masses described above, they are assumed to be normally 

distributed and independent. For sampling purpose, a truncated standard normal distribution 

𝑧𝑖~𝑁(0,1) is used for each parameter and generated with the aLHS method mentioned above. 

The distribution is truncated to 𝑧𝑖 ∈ [−2,2] in order to suspend infinite values and normalized 

to 0 ≤ 𝑧𝑖
∗ ≤ 1 by 

𝑚𝑃 

𝑧

𝑥

𝑚𝑃3

𝑚𝑇𝑚𝐵𝑚𝐹

𝑚𝐸

𝑚𝐸𝑄

𝑥𝑃 
𝑥𝐸𝑄
𝑥𝐹
𝑥𝑃3

𝑥𝐵
𝑥𝑇

𝑥𝐸

 𝐺

Figure 9: Uncertain masses 
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𝑧𝑖
∗ ≔

2 + 𝑧𝑖
4

. (24) 

Finally, the parameters with specific ranges (23) and units used in the model can be calculated 

via 

 𝑟𝑖 = 𝑟𝑖,𝑙 + 𝑧𝑖
∗(𝑟𝑖,𝑢 − 𝑟𝑖,𝑙) , 𝑖 = 1,… ,9.  (25) 

4.4 Optimization Results 

The RDO is performed subject to design objectives (14), normalized design parameters (21) 

and uncertainties (25). For evaluation of robustness measures, a sample size of 20 is used for 

uncertainties. The initial set 𝑆(0)  contains 30 support points. In each iteration 𝑁 = 5 new 

support points are added to improve the RS. The SPEA2 performs optimization on the RS 

with a maximum of 150 generations with 20 new individuals in each generation. The RDO 

procedure is limited to 40 adaptions of the RS resulting in a maximum of 30 + 40 × 5 = 230 

original design evaluations. While running 10 simulations in parallel, the overall RDO took 6 

days and 9 hours until it converged after already 38 adaption iterations. The evaluated support 

points are shown in Figure 10. It is clearly visible, that all criteria are improving 

simultaneously resulting in a rather narrow Pareto-front indicating that the mean objectives 

are not as contradicting as assumed. Nevertheless, both criteria could be improved w.r.t. the 

reference vehicle setup where also robustness seems to be improved. For better visualization 

of the improvement, histograms of two specific objectives of a Pareto-optimal design 𝒪 lying 

on the knee of the front are shown in Figure 12 and compared to the reference set up. It can be 

easily observed that mean value and variance of 𝑓2  defined in Equation (13) are both 

𝜎 𝜎2

𝜇 

𝜇2

0.6

2.3

0.5 1.5

0.6

2.2

0.3

4.3

reference design

optimal compromise 𝒪

Figure 10: 4D-Pareto plot of support points 
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significantly improved. The same is true for the mean value of 𝑓5 defined in Equation (13), 

whereas the scatter of 𝑓5  is only slightly improved. The corresponding accelerations 

determining 𝑓2 and 𝑓5, namely the acceleration of the left tire (Figure 11a) and the driver’s 

seat (Figure 11b) in x-direction confirm the histogram information in Figure 12 in the time-

domain. Especially the large scatter in tire oscillation of the reference car during axle tramp 

can be observed. 

�̈�𝑆�̈�𝑊,𝑙

𝑡 𝑡

(a) (b)
60

−60
1 1.8

2.5

−2.5
0.4 1.5

Figure 11: Time plots of tire acceleration during tramp oscillation (a) and driver's seat acceler- 

                  ation after obstacle crossing (b) acceleration of optimal design 𝒪 (grey) and refer- 

                  ence design (black) 

𝑓2 𝑓5

(a) (b)

𝑓
𝑟𝑒
 
 
𝑒
𝑛
𝑐 

𝑓
𝑟𝑒
 
 
𝑒𝑛
𝑐 

0 0

30

100 900

40

0.1 0.38

Figure 12: Frequency plot of objectives 𝑓2 (a) and 𝑓5 (b) for optimal compromise design 𝒪 

                 (grey) and reference design (black) 
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5 Conclusions 

The paper demonstrates an efficient multi-objective robust design optimization procedure. 

Implementation of an adaptive response surface modeling strategy significantly reduces 

computational effort compared to direct optimization which is proven by optimizing a simple 

test function. An application of the proposed method to vehicle suspension design by using 

multibody system simulations and optiSLang is successfully performed. Optimization is done 

in terms of minimizing predefined accelerations measured throughout the loadcases axle 

tramp and single step-shaped roadway excitation for a given range of bushing stiffnesses and 

damping parameters under presence of scattering vehicle masses. Although both loadcases 

need contrary bushing characteristics, optimal compromise designs could be found where 

mean value and variance of the vehicles dynamical behavior are significantly improved 

compared to a reference design. 
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