dynando

Statistics on Structures 3.1

New features exploring new fields of application

Christian Bucher, Claudia Bucher, Christopher Riemel, Sebastian Wolff*

DYNARDO Austria GmbH

WOST 2014, 6./7.11.2014, Weimar

optiSLang & SoS: What is the difference ? Stochastics: Degree of statistical information

deterministic numbers (e.g. Euro Code, DIN)	characteristic values, safety factors	safety for a single design, usually conservative
random parameters optiSLang	statistical description of single parameters random distribution functions, correlation	probability of failure quantile values sensitivity analysis
random field quantities optiSLang with Sos	spatially varying statistical description correlation between various points in space	realistic description of spatially distributed scatter

Optimisation: Complexity of description of variations

scalar parameters	response of single parameters	constraint and objective functions sensitivity analysis meta models
signals optiSLang with SoS	temporally varying response correlation between various points in time	hot spots as constraint and objective functions sensitivity analysis meta models
field quantities optiSLang with SoS	spatially varying response correlation between various points in 3D space	hot spots as constraint and objective functions sensitivity analysis meta models

Random fields:

Typical quantities being random fields

- geometric perturbations
 - node coordinates
 - shell thickness
 - thickness of composite layers
- material properties
 - concrete: mortar, admixtures (gravel)
 - ceramics: porosity
 - contact friction
- damage
 - plastic strain, cracks
- loading
- state variables
 - stresses, strains
 - displacements

Software abilities for RDO (selection)

Robustness evaluation		
Generation of random samples	scalar	3D field
Compute robustness measures	scalar	3D field
Hot spot detection	no	3D field
Sensitivity analysis	scalar	3D field
Optimization		
Hot spot detection	no	3D field
Sensitivity analysis	scalar	3D field
Optimization on meta model (replace CAE process)	scalar	3D field

Typical application: Robustness evaluation at hot spots

- Statistics on Structures:
 - Identify "hot spots", i.e. potential failure locations
 - locations with large mean,
 - large variation or
 - extremal quantile values, etc.
- optiSLang:
 - Robustness evaluation at hot spots
 - Spatially local sensitivity analysis at hot spots to find responsible input parameters

Typical application: Spatially global sensitivity analysis

- Random field decomposition:
 - Analyse sensitivity of amplitudes, visualise location of sensitivities through scatter shapes

Typical application: Generate random field samples

- Statistical estimation of random field model
- Consecutive CAE processes
 - 1. Forming step 1: Deep drawing
 - 2. Forming step 2
 - 3. ...

New Features

- SoS 3.0
 - new GUI
 - faster empirical random field model creation
 - no mesh coarsening
- SoS 3.1 (December 2014)
 - F-MOP (Field Meta model of Optimal Prognosis)
 - Extended finite element type library and visualisation
 - Non-matching meshes
 - Improved integration with optiSLang

F-MOP Base: Random field model

 Series expansion using deterministic "scatter shapes" and a small set of random numbers ("amplitudes")

- optiSLang: simulation and analysis of amplitudes
- SoS: (de)composition of random fields from amplitudes and scatter shapes

F-MOP Extension: Field meta model ("F-" = "Field-")

 1st layer: Represent spatial variations of field responses in terms of scalar parameters

• 2nd layer: Represent these parameters in terms of the inputs by MOP

• Black box model (F-MOP):

F-MOP: Spatially global sensitivity analysis Field CoP

- Field Coefficient of Optimal Prognosis (F-CoP):
 - A global F-CoP value: integral value of the CoP for the entire field
 - F-CoP plot: CoP at the respective position
- F-CoP of whole model:
 - Explainable variation at specific position
- F-CoP for individual input parameters:
 - Explainable variation at specific position through respective parameter
- Identifies and orders important input parameters
- Simplifies presentation and interpretation !

F-MOP: Example F-CoP of stress field in a biomedical simulation

- ANSYS Workbench, tetra10 elements, incompatible meshes
- Varying position of maxima of von Mises stress
- Most important input parameter: Bew_X, global F-CoP = 30% (0 ... 51%)

New finite element type library and visualisation

Finite element types

- Old: Shell elements (target application: metal forming)
- New: 3D Continuum elements
- FEM element types:

triangular shells	3n, 6n
quadrilateral shells	4n, 8n
tetrahedra	4n, 10n
pentahedra	6n, 15n
hexahedra	8n, 20n

Further mesh types: 1d grid (signals), 2d grid (pictures), 3d grid (voxel data)

Visualisation of continuum elements Example: Smooth data interpolation

Visualisation of continuum elements Example: Element wise coloring

Visualisation of continuum elements Example: Isolines

Visualisation of continuum elements Example: Isosurfaces and transparency

Visualisation of continuum elements Example: Highlight critical areas

Visualisation of continuum elements Example: Identify maxima

Visualisation of continuum elements Example: Cutting plane

Mapping of data among nonmatching meshes

Incompatible meshes Why ?

- SoS needs a unique mesh that serves as reference to store and compute statistical data (Important: mesh topology, i.e. node and element numbers)
- Design meshes may differ from reference mesh topology due to:
 - Eroded elements: Erase elements (and nodes) during analysis
 - Varying position of production sheets (robustness DoE)
 - Varying position of reference mesh (e.g. from CAD) and design meshes (e.g. measurements)
 - Variations in geometry -> remeshing
 - Adaptive mesh refinement (and coarsening)
- Observed effects:
 - different coordinate systems
 - slightly deformed
 - non-matching meshes

Incompatible meshes Step 1: Adjust coordinate system for each design

no correction

Translate design mesh to position of reference mesh

Translate and rotate design mesh to position of reference mesh

Statistics on Structures 3.1

Incompatible meshes Step 2: Find closest point projection

Project boundary points of the reference mesh onto the boundary of the design mesh

Incompatible meshes Step 3: Deformed reference mesh

- Objective: Represent the geometry of the design mesh using the reference mesh topology
- Create a deformed boundary of the reference mesh

Incompatible meshes Step 4: Adjust interior nodes

 Apply displacements to the interior nodes of the reference mesh in order to represent the changed shape of boundary

Step 5: Map data between both meshes (coor deviations, strain, stress)

Statistics on Structures 3.1

Integration SoS & optiSLang Support for optiSLang Bin files

- Import samples of input parameters (scalars and vectors) as scalar quantities into SoS
- Export samples of amplitudes and of hot spots as responses to optiSLang
- Direct use of exported bin files for use in MOP (sensitivity analysis at hot spots)

Export sc	alar parameters to optiSLang		
Input file:	p_drawing.opd/Robustness/Robustness_osl3.bin		
Output file:	t file: 4/examples/Isdyna/Demo_export/SoS_tutorial.bin		
Export generated scalars only			
Export only active samples			
Test com	npatibility of input file		
	Ok Cancel		

Integration SoS & optiSLang F-MOP

- SoS: Export data in pre-defined format for F-MOP
- optiSLang example project
 - Create F-MOP
 - Open SoS post processing

Integration SoS & optiSLang Generate random field samples

- SoS: Export data in pre-defined format for random field simulation
- optiSLang Beta modules: "SoS Generate"
 - Defines random field parameters and sets statistical properties
 - Copies for each design CAE input files to design directory
 - Calls SoS in batch mode: modify the copied files

Summary

• SoS should be used if

- position of maxima/minima is changing
- spatially distributed effects are to be considered
- SoS can be applied to a wide range of applications within the fields of robustness analysis and optimisation

SoS extends optiSLang by

- Hot spot detection
- Spatially local sensitivity analysis
- Spatially global sensitivity analysis
- Generation of random field samples
- Visualisation is the simplest way to provide confidence in statistical results

Further questions and support:

DYNARDO Austria GmbH kontakt@dynardo.at