

Parametric Optimization of Steel-Concrete Composite Columns under Blast Impact

Stefan Trometer

11. Weimarer Optimierungs- und Stochastiktage 06.-07.11.2014 in Weimar

Prof. Dr.-Ing. Martin Mensinger Lehrstuhl für Metallbau Technische Universität München

Introduction

Objectives

- → Representative example of an ground floor column of an exposed building
- → Increasing the load bearing capacity under impacts from close-range detonations in combination with a realistic axial loading of the column

Ground floor column with close-range detonation scenario

Propagation of blast pressure wave along the column surface

Challenges

- ightarrow Complex material models \checkmark
- ightarrow Verification of numerical analysis \checkmark
- \rightarrow Fluid-Structure-Coupling \checkmark
- \rightarrow Simulation costs (time) of 3D explicit nonlinear simulations \checkmark
- \rightarrow Multi-dimensional optimization \checkmark

Detonation Scenario

Detonation Scenario						
Distance Det.	R	1,5 m				
Height Column	h	5,0 m				
Height Det.	h,det	1,0 m				
Scaled Intensity	Z	0,20 – 0,50 m/kg^1/3				

→ Close-Range detonations with high impact intensities

Numerical model of the eulerian domain

- \rightarrow ANSYS AUTODYN
- \rightarrow MME|FCT-Solver 1D|2D|3D domain
- \rightarrow Discretisation 5/10 mm
- \rightarrow Number of cells 4-16 Mio.
- \rightarrow Local mesh confinment (Zoning Box)
- \rightarrow Utilization of symmetry
- \rightarrow Verification according to UFC 3-340-02

Department of Civil, Geo and Environmental Engineering Chair of Metal Structures

- → Complex superposition of different reflexion phenomena
- → Peak loading on the column surface from 60 MPa to 250 MPa within 5 ms

Department of Civil, Geo and Environmental Engineering Chair of Metal Structures

Numerical Analysis

- \rightarrow ANSYS AUTODYN R14.5
- \rightarrow Axial pre-stress with 50% $\rm N_{pl}$ (!)
- → Implicit-explicit coupling for static pre-stress and dynamic blast analysis
- → Detailed sensitivity and verification analysis regarding discretization, contact, imperfections, symmetry, coupling were conducted
- \rightarrow Later optimization analysis only with respect to the acceptable and verified model simplifications (!)
 - \rightarrow CHS \oslash 355,6 x 16,0 mm
 - $\rightarrow\,$ No additional reinforcement
 - \rightarrow System length 5000 mm
 - \rightarrow Friction coefficient μ = 0,3
 - \rightarrow Explicit material models
 - \rightarrow Steel: Johnson & Cook
 - → Concrete: RHT *Riedel, Hiermaier & Thoma* (EMI Freiburg)

Stahl S 355 [MPa]				
f _{yk}	355			
f _{uk}	490			
Ea	E _a 210000			
Beton C 35/45 [MPa]				
f _{ck}	35			

I CK	00
f _{ck,cube}	45
f _{ctm}	3,2
Ecm	34000

Department of Civil, Geo and Environmental Engineering Chair of Metal Structures

Load Concentrations & Failure Modes

Load concentrations (EPS) and assigned crack pattern of the concrete core

→ For the highest impact intensity

→ Load concentration and shear failure mode at column base define the starting point of the optimization analysis

Parametric Model

 → Parameter definition with 5 input variables and 24 output variables (strains, displacements, velocities, bearing reactions,...)

h_{pl}

Variable	Description	Min	Max	Dim.
BC_oben	Rotational DOF at column head	0 (stiff)	1 (hinged)	[-]
BC_unten	Rotational DOF at column base	0 (stiff)	1 (hinged)	[-]
h_v	Deepening	0,00	0,50	[m]
Spring	Horizontal spring stiffness	1,00E+04	1,00E+07	[N/mm]
Spring_log	Logarithmic spring stiffness	4	7	[-]
Damp	Damping at column base	1	50	[Ns/mm]

OptiSLang representation

	Name	Parameter type	Reference value	Constant	Value type	Resolution	Ra	nge	Range plot
1	BC_oben	Deterministic	0		REAL	Ordinal discrete by value	0; 1		
2	BC_unten	Deterministic	0		REAL	Ordinal discrete by value	0; 1		
3	h_v	Deterministic	0		REAL	Continuous	0	0.5	
4	Damp	Deterministic	1		REAL	Continuous	1	50	
5	Spring_log	Deterministic	7		REAL	Continuous	4	7	

 BC_{oben}

Parametric Model

 \rightarrow Parameter definition with 5 input variables and 24 output variables (strains, displacements, velocities, bearing reactions,...)

h_{pl}

Variable	Description	Min	Max	Dim.
BC_oben	Rotational DOF at column head	0 (stiff)	1 (hinged)	[-]
BC_unten	Rotational DOF at column base	0 (stiff)	1 (hinged)	[-]
h_v	Deepening	0,00	0,50	[m]
Spring	Horizontal spring stiffness	1,00E+04	1,00E+07	[N/mm]
Spring_log	Logarithmic spring stiffness	4	7	[-]
Damp	Damping at column base	1	50	[Ns/mm]

Model improvement by the logarithmic definition of the spring input variable

Trometer | Mensinger

h_{det}

 BC_{oben}

Sensitivity Analysis

Sampling

- \rightarrow 6 predefined designs at the "corners"
- \rightarrow ALHS-Sampling with 24 Designs
- \rightarrow Limitation of designs due to complex nonlinear models

Signal: Derived history of maximum system deflections

Design	BC_oben	BC_unten	h_v	Spring	Spring_log	Damp
1	0	0	0,00	1,00E+07	7,00E+00	1
2	1	1	0,50	1,00E+07	7,00E+00	1
3	1	1	0,50	1,00E+04	4,00E+00	1
4	0	1	0,10	3,16E+04	4,50E+00	25
5	1	0	0,20	1,00E+05	5,00E+00	10
6	0	1	0,30	1,00E+06	6,00E+00	50
7	0	1	0,15	4,91E+06	6,69E+00	10
8	1	0	0,25	6,02E+06	6,78E+00	39
9	1	1	0,45	3,75E+04	4,57E+00	20
10	1	0	0,20	3,06E+04	4,49E+00	26
11	0	0	0,40	3,27E+06	6,51E+00	29
12	1	0	0,05	4,29E+05	5,63E+00	42
13	1	0	0,10	5,62E+04	4,75E+00	5
14	0	0	0,20	1,36E+04	4,13E+00	36
15	1	0	0,00	2,67E+06	6,43E+00	16
16	1	0	0,30	1,45E+06	6,16E+00	6
17	1	1	0,50	9,03E+06	6,96E+00	46
18	1	1	0,05	6,89E+04	4,84E+00	2
19	0	0	0,45	1,78E+06	6,25E+00	35
20	1	0	0,00	7,89E+05	5,90E+00	49
21	0	0	0,40	9,67E+05	5,99E+00	7
22	1	0	0,50	6,44E+05	5,81E+00	33
23	0	1	0,25	2,33E+05	5,37E+00	25
24	1	0	0,15	8,44E+04	4,93E+00	18
25	1	1	0,15	7,37E+06	6,87E+00	9
26	0	1	0,15	1,18E+06	6,07E+00	38
27	1	1	0,40	2,04E+04	4,31E+00	44
28	0	0	0,25	2,49E+04	4,40E+00	45
29	0	0	0,10	3,50E+05	5,54E+00	48
30	1	1	0,25	1,55E+05	5,19E+00	13
141	0	1	0,00	1,00E+07	7,00E+00	34
397	0	1	0,20	7,89E+06	6,90E+00	41

Department of Civil, Geo and Environmental Engineering Chair of Metal Structures

Sensitivity Analysis

Col and linear correlation coefficients for input variable BCunten

→ Good descriptiveness of the system behaviour by the chosen parametric model

Sensitivity Analysis

Descriptiveness (CoP) of load concentrations by output variables EPSi

→ Good descriptiveness of the system behaviour by the chosen parametric model

Optimization – Minimizing Load Concentrations

History of Optimization with MOP					
Input-Variable	Design (141)				
Spring _{log}	7,0				
Damp	34				
H _v	0				
BC _{unten}	1				
BC _{oben}	0				

- → Optimization using the Metamodel of Optimal Prognosis (MOP) with Evolutionary Algorithm (EA)
- \rightarrow Objective: Minimum EPS
- \rightarrow No additional numerical analysis needed
- ightarrow Reduction of the dimensioning load concentration to less than 60%
- \rightarrow (But increase of maximum deflections)
- ightarrow Inaccuracy by verification limited to 1,5%

Department of Civil, Geo and Environmental Engineering Chair of Metal Structures

Pareto Optimization – 2 Objectives

Input-Variable	Design (397)
Spring _{log}	6,9
Damp	41
H _v	0,20
BC _{unten}	1
BC _{oben}	0

Objective Pareto Plot

- → Pareto optimization using the MOP with a Particle Swarm Algorithm (PSO)
- → Objectives: 1) Minimum EPS
 2) Min horizontal bearing loads
- \rightarrow No additional numerical analysis needed
- → Resulting Pareto-Front gives minimum combinations for objectives
- \rightarrow Inaccuracy by verification limited to 2,3%

Conclusion

Achieved objectives for increasing the capacity of the column structure

- ightarrow Reduction of load concentration ightarrow general increase of resistance \checkmark
- \rightarrow Avoiding the shear failure mechanism \checkmark
- \rightarrow Controlled redistribution of loads \checkmark
- \rightarrow Reduction of peak bearing loads \checkmark
- ightarrow Comparison of different optimization strategies \checkmark
 - \rightarrow bearing characteristics
 - \rightarrow variable deepening at column base
 - \rightarrow controlled horizontal flexibility at column base

General amendments

- \rightarrow Logarithmic variable definition increased the descriptiveness of the model
- \rightarrow Designs at the "corners" of the parameter space guarantee the mitigation of failed designs
- \rightarrow Limited number of designs achieved good results for the verification
- \rightarrow Guideline for similar dynamic engineering problems

Research Focus Blast Protection in Civil Engineering

Prof. Dr. Martin Mensinger mensinger@tum.de

Lehrstuhl für Metallbau Technische Universität München \rightarrow New since October

Stefan Trometer strometer@cadfem.de

CADFEM GmbH Grafing bei München

Thank you for your kind Attention!