

Realize Your Product Promise®

ANSYS[®]

Statistical Analysis of Mistuned Compressor Wheels by Model Order Reduction

Outline

What is Mistuning?

- Why does Blade x break?
 - Local Production Error?
 - Local Material Error?
 - Local Overload?
 - Local Erosion?
- Non cyclic System due to
 - Allowed Production Tolerances
 - Small Erosion
- \rightarrow Mistuned System

Simulation Model – Overview

Mistuning - Modelling

Full Model - Random Fields

- Measured / Assumed
 Variation → Random Fields
 (=Eigenvectors of
 Correlation Matrix)
- Random Field is morphed on tuned System Mesh
- Pro:
 - Model for large Mistuning
 - efficient handling of statistics
- Con:
 - computational effort

CMS Model

- Cyclic Model + non-cyclic Mistuning
 - Proportional Mistuning
 - Intended Mistuning
 - ...
- Different Stress Levels on Sectors/Blades
- Pro:
 - efficient: single sector mesh required
- Con:
 - small Mistuning

Mistuning - Reduced Order Model

optiSLang Strategy

General Procedure:

- Design Optimization
 - Gradient Based
 - Generic
 - Evolutionary

- Design of Experiments
 - Data Sampling
 - Detecting Correlations
 - Detecting Important Parameters
 - Parameter Space Reduction
 - Response Surface: MoP
 - Reliable Meassure of Prediction Quality: CoP
- Design Optimization

optiSLang Set-Up

1	Name	Parameter type	Reference value	Constant	PDF	Type	Mean	Std. De	
1	Mist_Sec_01	Stochastic	0	10	A	NORMAL	0	0.1	• 3
2	Mist_Sec_02	Stochastic	0	83	A	NORMAL	D	0.1	• D
3	Mist_Sec_03	Stochastic	0	121	~	NORMAL	0	0.1	_
4	Mist_Sec_04	Stochastic	0	E1.	~	NORMAL	0	0.1	
5	Mist_Sec_05	Stochastic	σ	10	r	NORMAL	ø	01	• (
6	Mist_Sec_06	Stochastic	0	E73	~	NORMAL	0	01	
7	Mist_Sec_07	Stochastic	0	10	r	NORMAL	Ð	0.1	100 %
8	Mist_Sec_08	Stochastic	0	10	A	NORMAL	D	01	100 %
9	Mist_Sec_09	Stochastic	0	101	~	NORMAL	0	01	100 %
10	Mist_Sec_10	Stochastic	0	10	~	NORMAL	0	0.1	100 %
11	Mist_Sec_11	Stochastic	0	101	~	NORMAL	D	01	100 %
12	Mist_Sec_12	Stochastic	0	10	~	NORMAL	D	0.1	100
13	Mist_Sec_13	Stochastic	0	E1	A	NORMAL	0	0.1	100
14	Mist_Sec_14	Stochastic	0	10	r	NORMAL	D	01	100
15	Mist_Sec_15	Stochastic	0	101	~	NORMAL	0	0.1	100
16	Mist_Sec_16	Stochastic	0	E	r	NORMAL	0	0.3	100
17	Mist_Sec_17	Stochastic	0	101	~	NORMAL	Ø	0.1	100 %
18	Mist_Sec_18	Stochastic	0	83	1	NORMAL	0	0.1	100 %
19	Mist_Sec_19	Stochastic	0	10	1	-			
20	Mist_Sec_20	Stochastic	0	10	1	N			Rol
21	Mist_Sec_21	Stochastic	0	20	1	NZ			
22	Mist_Sec_22	Stochastic	0		10	N			
	Which Blades have dominant							Input	••
	mpacter								

- Reference=Mean Value=0, i.e. Tuned
- 22 Blades \rightarrow 22 Random Variables
- Standard Deviation=0.1% 1.0% 10% 100%
- DoE with 400 and 800 dps

Objective: Variation of Meximal Stress

optiSLang DoE Monitoring

Meta Modell of Optimal Prognosis

Important Parameters

Best-Practice Guide Lines

- Reason for small Coefficient of Prognosis:
 - Number Design Points
 - Numerical Error
 - Model Error
 - Multiple Mechanism
 - Bad Parameterization (TWC vs. discrete)
 - Post-Processing Output (SOS vs. single Value or Signal)
- Number of Design Points for Meta-Model depends on:
 - Number of <u>important</u> parameters, <u>here: all</u> <u>parameter!!</u>
 - Nonlinearity of Response Surface

Objective for Meta-Model: Maximal Coefficient of Prognosis

Summary and Outlook

- Summary
 - Mistuning has significant
 Influence to Bladed-Rotors
 (and other cyclic structures)
 - Efficient Mistuning Models are available
- Outlook
 - Further Investigation with more Design Points
 - TWC Parameterization
 - Post-Processing by SOS
 - Large Mistuning: Application of Random Fields

Use Simulation and Statistical Analysis...

