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Abstract

A coupling among measurements, finite element model simulations in ANSYS
and system simulations in Matlab is shown in this paper for a calibration bench
for heat flux sensors. A simulated step of its finite element model was calibrated
using optiSLang with a measured temperature step. This allowed a characterization
of the model by variation of the boundary conditions, the material properties and
the thermal contacts between the components and gave the possibility to reduce the
model that represented the bench best with the tool mor4ansys. With the reduced
model a feedback control for the bench in a system simulation was designed.
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1 Introduction

A Heat Flux Sensor (HFS) is a sensor which transduces the heat flux driven by a temper-
ature difference between the sensor faces into an electrical signal. This operating principle
is based on the Fourier’s law of heat conduction Incropera und DeWitt (1996). HFS are
widely used in different fields such as meteorology, agriculture, medicine and civil engi-
neering. Before a sensor can be used, it is necessary to know the relationship between
the generated electrical signal and the heat flux. It can be determined with a sensor
calibration.

A calibration bench for HFS was developed at the Institute for Process Measurement
and Sensor Technology of Technische Universität Ilmenau Hohmann u. a. (2014). In this,
a HFS under test is positioned between two normalization blocks made of steel (fig. 1).
The normalization blocks are brought to a defined temperature by means of the energy ap-
plied to their respective electrical heaters. The surface temperature of each normalization
block is determined by extrapolation of three temperatures along the centerline of each
block, measured by means of thermocouples (TC). The calibration bench is insulated to
ensure homogeneous temperature distribution in the normalization blocks and to deaden
the effects of the environment in the calibration process.

sensor under test

insulation

heater

air gap

homogenization block

TC

Figure 1: Design of the calibration bench

2 Workflow

For the developed calibration bench, the possibility of coupling field simulations (finite-
element-simulations, FEM) and system simulations to create a feedback control for the
calibration bench is evaluated. The workflow is shown in the fig. 2.

It is intended to use a model of reduce order (model order reduction, MOR) of the
calibration bench for the design of the feedback control. The found controller can be
implemented in the real bench in order to validate the potential of designing a feedback
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Figure 2: Simulation workflow

control for a system before its fabrication.

3 Measurement

The surface temperature at the lower normalization block was measured for a step re-
sponse of a defined power input of 10 W in the lower electrical heater. The calibration
bench was cooled by free convection to room temperature after the steady state has been
reached (fig. 3). Thus, there are two step responses of the bench for the lower normaliza-
tion block, one for the heating and one for the cooling process. In this paper the system
model will be assumed as single input single output system (SISO system).

4 FEM-simulation

The cool down step of the calibration bench starting from the steady state of the heat
up step was simulated (fig. 3). For this, a steady state simulation for the heating process
followed by a transient simulation for the cooling process were performed. Since the cool
down curve represents the system dynamics adequately, this curve was used to calibrate
the system parameters. The steady state, defined by the heating process, was used to
define the energy input of the system properly.
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Figure 3: Measurement and its selected part for the parameter calibration

4.1 FEM-model

For the FEM-simulation, the calibration bench was modelled as 2D-Axisymmetric (fig.
4). The bench has an air filled space above the upper electrical heater, which allows
the compensation of different thickness of HFS. For this and for the air gap next to the
sensor under test, bodies with material properties of air were defined. This was necessary
since the tool used for the model order reduction, mor4ansys, only allows to reduce linear
models. Thus is not possible to include radiation as boundary condition. The model was
meshed with 10500 Quad8 elements and has 32600 nodes. The mesh quality measured
by the skewness is less than 0,02 for all elements. The energy input applied to the lower
electrical heater was defined as heat generation and the energy outputs to the ambiance
were defined with two heat transfer coefficients. Due to the location of the calibration
bench on a table in the laboratory.

4.2 Parameter calibration

An well-defined FEM-model of the calibration bench is necessary to get a reduced model
(MOR-model) for the design of the feedback control. Thus a parameter calibration using
optiSLang was made. The FEM-model input parameters to calibrate it to the measure-
ment by the parameter variation in optiSLang can be divided into 3 categories, as show
in tab. 1. The thermal properties of air were not varied, because they are well known for
different temperatures. The thermal conductivity of the insulation was varied in a large
range of typical values for insulation materials, because it is not accurately known. Ther-
mal contacts were defined between the heaters and the normalization blocks and between
them and the HFS. The calculation of these contacts supposes there is an air layer of
variable thickness between the elements in contact. This value should not be considered
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Figure 4: FEM-model with mesh and boundary conditions

as a physical distance but rather as the average thermal resistance value that opposes
the heat flux from one element to another. If this value is zero, then is no opposition.
The boundary conditions were varied as well. These variations covers the possible power
change of the energy source and the uncertainty of heat transfer coefficients to the am-
biance.

The difference of the simulated temperature curve and the measured temperature curve
for the cool down process was the output parameter to perform an optimization. For the
steady state simulation a temperature difference between measurement and simulation at
the end of the heat up process of less than 1 ◦C was set as constraint.

Table 1: Parameters of the sensitivity analysis (nb normalization block, htc heat transfer
coefficient)

CoP (MoP) in %
Category Input parameters Components Variation Steady state Transient #

Insulation 10% - - 1
Heat capacity c in Normalization Blocks 10% - - 2

J kg−1 K−1 Heaters 10% - - 3
(Only transient) HFS 10% - - 4

Insulation 85% 81 85 5
Thermal material Thermal conductivity λ in Normalization Blocks 10% - - 6

properties W m−1 K−1 Heaters 10% - - 7
HFS 10% - - 8

Insulation 10% - - 9
Density ρ in Normalization Blocks 10% - 6 10

kg m−3 Heaters 10% - - 11
(Only transient) HFS 10% - - 12

Upper heater - Top NB 1 × 10−6 - 3 - - 13

Thermal contacts Separation between Upper NB - HFS 1 × 10−6 - 3 - - 14

components in mm Lower NB - HFS 1 × 10−6 - 3 - - 15

Lower heater - lower NB 1 × 10−6 - 3 - - 16

Energy input in W m−3 Lower heater 10% 10 7 17
Boundary conditions Energy output α in Upper htc 3 - 10 - - 18

W m−2 K−1 Lower htc 3 - 10 6 10 19
Total CoP (MoP) 99 88

The most sensitive input parameters according to a sensitivity analysis, their CoP and
the total CoP are shown in tab. 1 as well; both were calculated in the MoP. A total CoP
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of 88% for the transient and 99% for the steady state simulation, with an input parameter
reduction from 19 to 4 are considered to be suitable for the model description with the
MoP and for a subsequent optimization on it. Figure 5 shows the steady state and the
transient simulations response surfaces of the two most sensitive input parameters in the
steady state constrain and in the transient optimization output parameter respectively. A
temperature difference close to 0 ◦C and a difference between the measured and simulated
curve near to 0 are desired.
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Figure 5: Response surfaces of the difference between measurement and simulation for the
most sensitive input parameters (left steady state simulation, right transient simulation)

For this, a sensitivity analysis and an optimization in the MoP using a global evo-
lutionary algorithm was carried out. The simulated curve and the measured curve were
calibrated with the variation of the 4 most sensitive input parameters. Another three opti-
mizations were performed for comparative purposes and to evaluate the model description
of the MoP. Here a global evolutionary algorithm for the 4 most sensitive parameters (not
in the MoP), a global evolutionary algorithm followed by an local evolutionary algorithm
for the 19 input parameters and a NLPQL algorithm for the 19 input parameters were
used for optimization respectively.

Figure 6 shows the measured and simulated curves for the pre-optimization (starting
point) and for each of the optimizations mentioned above. The successful adjustment
with the change in the parameters calculated by optiSLang with the different algorithms
can be seen. Figure 7 shows the average difference to the measurement of the optimiza-
tions in the fig. 6 and the number of performed simulations to reach those values by the
different methods. A suitable compromise between simulation time and accuracy of the
response was obtained with the optimization in the MoP. This justifies the assumption
above, that the model is well described with the total CoP’s of 88% and 99% and the 4
selected input parameters after the sensitivity analysis. In addition the model description
with only 4 input parameters enables a detailed study of their respective influence on the
output parameter and the possibility of designing an effective feedback control only by
simulation (see the dashed line fig. 2). They could be evaluated by a robustness analysis
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Figure 6: Measurement, first simulations and calibrated simulations by different methods

within possible ranges of availability.

4.3 MOR

The aim of the model reduction is to find a projection matrix that allows to project the
state space of the FEM-model onto a state space of lower order with a minimum error
Rudnyi und Korvink (2006). This happens by using Krylov subspaces. The reduced ma-
trices in implicit form provided by the used application mor4ansys can be easily converted
to their explicit form using e.g. Matlab. These matrices define the state space of lower
order. This reduced state space model (MOR-model), is independent of the system inputs
Gödecke u. a. (2012), which permits to simulate harmonic or transient system simulations.
In many cases, the aim of simulations using MOR-models is to perform faster simulations
compared to FEM-models. The goal in our case is to design a feedback control based
on a MOR-model, which models the real device after calibrating it by optimization with
optiSLang and afterwards to implement the feedback control on the device. As discussed
in the section measurement, the MOR-model will have only one input (heat generation).
Therefore the further comparisons will be only made for the heat up curve from fig. 3.
Figure 8 shows the differences between the measured heat up and the FEM-model opti-
mized in the MOP and between the former and the MOR-model. The difference between
both models are shown as well. A comparison between fig. 7 for the cool down process
and fig. 8 for the heat up process confirms that the calibrated FEM-model and the re-
duced MOR-model reflect the thermal behaviour of the calibration bench. The differences
between the two process for both models are less than 5%.
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Figure 7: Average difference in percent between measurement and simulations and number
of simulations by the different methods to reach this value
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Figure 8: Differences in percent between the measurement and the MOR-model and the
FEM-model and the MOR-model for the heat up process
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5 System simulation and feedback control of the cal-

ibration bench

A PI feedback control was designed using the MOR-model and implemented in the cali-
bration bench. A new measurement to compare the controller operation was carried out
and compared again with the simulated response to assess the proposed method. Ad-
ditionally, the step response of the heat up process from fig. 3 was used to identify a
transfer-function-model by means of the Matlab System Identification Toolbox as well.
This model was also simulated with the PI feedback control from the MOR-model and
compared with the measurement too. These curves are shown in fig. 9. The difference in
percent between the two simulated curves and the measurement are shown in fig. 10.
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Figure 9: Temperature step response for the reduced model and the measured control
loop of the calibration bench

Both methods of system simulations show similar modelling errors. The proposed
method can be used, although the error of the MOR-model is bigger than the identified
model with the Ident toolbox, because the designed feedback control fulfils appropriate
his work. The model order reduction with mor4ansys after a sensitivity analysis and opti-
mization with optiSLang has the advantage that it does not require a measurement for the
characterization of the most influence parameters on the system response and would be
allow to design a feedback control without the existence of a real device, also in the virtual
design phase (dashed line fig. 2). Likewise, it be also allow the system order reduction of
most complicated FEM-models with more inputs and more outputs or the reduction of
slower systems, in which a measurement for a system identification would be longer.
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Figure 10: Difference in percent between measurement and simulation with the reduced
and the identified model
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