Current
 presented at the 13th Weimar Optimization and Stochastic Days 2016

 Source:
 www.dynardo.de/en/library

WEIMARER OPTIMIERUNGS-UND STOCHASTIKTAGE 2016

EXAMPLES OF PRO ENGINEERING WITH OPTISLANG AT DIESEL SYSTEMS

DR. RAINER KECK ROBERT BOSCH GMBH, DIESEL SYSTEMS

Agenda

- Diesel by Bosch
- Motivation/ Product Engineering
- ► Examples:
 - » Robustness of emissions by exhaust gas recirculation (EGR) against variation of pilot injection quantity
 - » Analysis of an experimental DOE concerning valve wear
 - Impact on scatter of dosing quantity using two dosing modules for achieving the requested large dosing quantity for DENOX exhaust gas treatment system (selective catalytic reduction; SCR)
 - » Strategy of an optimal task schedule at limited resources
- Conclusion

Robert Bosch GmbH Division Diesel Systems (DS)

Bosch facts 2015:

Turnover:

- » 70.6 billion EURO
- » Germany: 20%
- ► EBIT: 6.5%
- ► Equity: 34.4 billion
- ▶ R&D: 9%

Employees

- » 374.778 (end 2015)
- » Germany: 35%

Business sectors

- Mobility Solutions
 - » Diesel Systems
 - » Gasoline Systems
 - » Chassis Systems Ctr.
 - » Electrical Drives
 - » Autom. Electronics
 - » Autom. Steering ...
- Consumer Goods
- Industrial Technology
- Energy and Building Technology

Products at DS

- ► Fuel injection systems
- Exhaust gas treatment systems
- Sensors
- Starter systems
- Electronic control units

Motivation Product Engineering (PE, excerpt)

► Target:

Successful product engineering at Bosch

► Task:

One focal point of PE is the understanding of all relevant cause effect relationships

Principles/ Elements:

- » Understand products: We fully understand our product designs and production processes using suitable models describing their properties
- » Robustness

» Reliability

1 mm

4

BOSCH

Diesel Systems | DS/ETI2-Keck | WOST 2016 | June/23/2016 6534231

Ex. 1: Robustness of EGR Task

- Engine emissions (NOx, soot, noise) are essentially influenced by
 - » Exhaust gas recirculation (EGR), i.e. mixing exhaust gas into fresh cylinder air
 - » Fuel injection pattern consisting of several pilot, main and post injections per plunger lift

Engine application task:

Satisfy the torque request subject to constraints like emission limits, fuel consumption, comfort, driving pleasure

Robustness request:

Keep the effect of tolerances within acceptable limits

Task:

5

Quantify the influence of pilot injection quantity variation on the engine emissions

Ex. 1: Robustness of EGR Model

- Effect of exhaust gas recirculation is quantified by measurements
- Since the parameter space of EGR is very large a metamodel based on measurement results is used (ASCMO®)
- EGR is varying air mass between 420mg and 650mg
- Four injection parameters are considered (input parameters)
 - » Injection quantities of 1st and 2nd pilot injection (PI)
 - » Dwell time ('Spritzabstand') between 1st and 2nd PI as well as 2nd PI and main injection
- Output parameters:
 - » Noise
 - » NOx
 - » Soot
- Following parameters are kept constant: CO2, injection pressure, air load pressure, start of injection

6 Diesel Systems | DS/ETI2-Keck | WOST 2016 | June/23/2016 6534231

Ex. 1: Robustness of EGR Quantification of Robustness

- ► Influence of EGR on noise emissions
- Scatter of noise emissions due to standard tolerances of injection parameters
- Nominal values of injection parameters: bold face line

Diesel Systems | DS/ETI2-Keck | WOST 2016 | June/23/2016

6534231

© Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

ROSC

Ex. 1: Robustness of EGR Quantification of Robustness

- Quantification of size of tolerances
- Same scale on both plots

6534231

Ex. 2: Analysis of Injector Valve Wear Task

- At manufacturing plant the influence of three input parameters on valve wear for a common rail injector was investigated using experiments
- A 2-level full-factorial DoE (Design of Experiments) was performed using 2 samples for each design: 2 levels, 3 parameters, 2 samples per design: 2³x2=16 samples)
- Input parameters:
 - » Valve body tolerance (Ventilstück; VS)
 - » Armature bolt tolerance (AB)
 - » Valve guidance tolerance (Kugelführung; KF)
- Output parameters: Valve wear at 8 circumferential positions reduced to average wear and maximum wear
- ► Tasks:

9

- » What are the most important input parameters?
- » How to choose the input parameters in order to minimize the wear?

Diesel Systems | DS/ETI2-Keck | WOST 2016 | June/23/2016 6534231

Ex. 2: Analysis of Injector Valve Wear Data Analysis

Design Number [1]

There are designs that show significantly larger variation: Outliers!

Ex. 2: Analysis of Injector Valve Wear Interpretation of Data Analysis

- In design number 1 and 2, 11 and 12, 13 and 14 the scatter in the wear measurement is significantly higher than in the other designs
- Possible reasons:
 - » Design parameters which are not recorded may have a significant influence on the wear and may be different between the design numbers named above
 - » Scatter within DoE levels

► Conclusion:

Exclude designs with large scattering wear from the analysis, i.e. identify and exclude outliers!

[©] Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Ex. 2: Analysis of Injector Valve Wear Scatter within DoE Levels

- Blue lines separate the levels
- Scatter within one level is as large as the difference between levels

12 Diesel Systems | DS/ETI2-Keck | WOST 2016 | June/23/2016 6534231

Ex. 2: Analysis of Injector Valve Wear Outliers Detection

- ▶ Design number 2, 11 and 13 have been identified as outliers
- Automatic procedure for outlier detection is required!

Ex. 2: Analysis of Injector Valve Wear Identification of Main Influence Parameter

- ► W/O outliers: Large CoP**; reliable model
- ► W/ outliers: Small CoP; no reliable model
- Small CoP values was the trigger to search outliers

* MoP: Metamodel of Optimal Prognosis, ** CoP: Coefficient of Prognosis

14 Diesel Systems | DS/ETI2-Keck | WOST 2016 | June/23/2016 6534231

Ex. 2: Analysis of Injector Valve Wear Quantification of Main Influence Parameter

- Pareto Plot: AB and VS are significant parameters
- Parallel Coordinates Plot: Low values for VS and AB lead to low wear

15 Diesel Systems | DS/ETI2-Keck | WOST 2016 | June/23/2016 6534231

Ex. 3: Monte Carlo Simulation DENOX Task

Customer request:

An extraordinary huge dosing quantity of AdBlue® is required for a small lot size ('Stückzahl') application such that one dosing module is not sufficient

► Idea:

Use two dosing modules

► Assumption:

Let the dosing quantity of one module be normally distributed with mean μ and standard deviation σ

► Task:

Quantify the tolerances of the sum of both dosing quantities if the tolerances for one dosing module is given

16 Diesel Systems | DS/ETI2-Keck | WOST 2016 | June/23/2016 6534231

Ex. 3: Monte Carlo Simulation DENOX Visualization & Verification of Results

► Monte Carlo Simulation with Optislang and sample size of 1.000

- Estimated standard deviation for sum of two dosing modules 21.53 g/h
- ► Theoretical consideration: If $X=N(\mu,\sigma^2)$ then $X+X=N(\mu+\mu,\sigma^2+\sigma^2)$
- ► σ =15: $\sqrt{\sigma^2 + \sigma^2}$ = 21.51 g/h (values are falsified)
- Monte Carlo Simulation not necessary but helps to visualize the results

17 Diesel Systems | DS/ETI2-Keck | WOST 2016 | June/23/2016 6534231 © Robert Bosch GmbH 2016 All rights researed also regarding any disposal evaluation reproduction editing of

Ex. 4: Optimal Task Schedule Task

- ► An internal service provider gets tasks from different divisions
- Since it has limited resources it cannot work on all tasks in parallel with maximal capacity
- ► Task:

Find the optimal task schedule in order to maximize the global benefit

Ex. 4: Optimal Task Schedule Model

- ► N projects
- Consider for each project i:
 - » Project costs C_i (man power) during realization
 - » Benefit rate B_i after finalization
 - » Amortization time Ta_i: Time duration which is needed for earning the project's costs created by the project's benefit
- Limited man power resources for doing projects Capa_{Total}
- ► Calculate:
 - » Benefit rate B_i : Benefit per time unit which is created due to the project; $B_i=C_i/Ta_i$
 - » Project's realization duration Td_i assuming the total capacity is put on the project i; Td_i = C_i/Capa_{Total}

19 Diesel Systems | DS/ETI2-Keck | WOST 2016 | June/23/2016 6534231

[©] Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Ex. 4: Optimal Task Schedule Example

Project no.	1	2	3	4	5
Costs C _i [TEUR]	240	480	360	120	600
Amortisation time Ta _i [a]	1	1,5	2	2,5	1,3
Benefitrate B _i [TEU/a]	240	320	180	48	462
Project duration Td _i [a]	0,5	1	0,75	0,25	1,25

► Claim:

Optimal solution is achieved if the projects are ordered according to increasing project amortization time Ta_i

Ex. 4: Optimal Task Schedule Optimal Solution

- ► Compute all 120 permutations (5*4*3*2*1=120)
- ► Max. benefit for variant 3075 (after 10 years)
- ► Optimal ranking:

P1 (Ta=1), P5 (Ta=1.3), P2 (Ta=1.5), P3 (Ta=2), P4 (Ta=2.5) Rk(P1)=1, Rk(P5)=2, ...

21 Diesel Systems | DS/ETI2-Keck | WOST 2016 | June/23/2016 6534231

Ex. 4: Optimal Task Schedule Example

22 Diesel Systems | DS/ETI2-Keck | WOST 2016 | June/23/2016 6534231

Ex. 4: Optimal Task Schedule Sub-Optimality of Parallel Work

23 Diesel Systems | DS/ETI2-Keck | WOST 2016 | June/23/2016 6534231

Conclusion Optislang Supports PE at DS

- ► EGR loop
 - » Convert expensive experiments into a fast metamodel
 - » Quantification of robustness of EGR

Valve wear

- » Analysis of experimental results
- » Outlier detection
- » Identification/ quantification of main influence parameters
- DENOX dosing modules
 - » Visualization/ verification of theoretical results
- Task schedule
 - » Classical optimization problem
 - » Verification of 'stomach' feeling

