

presented at the 13th Weimar Optimization and Stochastic Days 2016 Source: www.dynardo.de/en/library

WOST – 2016 Design Optimization and Robustness of a Passenger Car Brake Rotor

Dr. –Ing. Stanley Baksi CAE-Braking; ZF TRW Active & Passive Safety Technology

Contents

1.	Background	
2.	Motivation	
3.	Analysis and Solution	
4.	Robustness of Design	
5.	Conclusion	

Background: Thermo Mechanical Loading of Rotor

Thermal loading leads to thermal deflections => thermo mechanical stress. Large differential deflection may lead to BTV (Brake Torque variation) issues

Deceleration leads to mechanical loading and material stress – critical for component durability

Both characteristics should be evaluated in rotor design

5 11/10/2016 CAE-Braking; ZF TRW Active & Passive Safety Technology, Presentation title

either mechanical or coning requirement

How to design stiffening rib? What shape would fulfill function and be robust against process variations? How to reduce mass due to addition of new feature?

8 11/10/2016 CAE-Braking; ZF TRW Active & Passive Safety Technology, Presentation title

Analysis: Schematic for Stochastic Response Analysis

Geometry parametrization in Catia +						
CADNexus						
FE calculation using Ansys workbench						
Sensitivity analysis using Optislang						
inside workbench						
Run time for single run ~ 1 hour						

DoE provided an analytical model with desired level of accuracy => Optimization can be done on analytical model to save FE calculation time

© ZF Friedrichshafen AG. 2015

777

Analysis: Results

Solution: Optimization

Optimization is carried out based on MoP model obtained using DoE Cross check of optimized design is done by confirmation FE calculation

Optimized design nominal limit to margin: Mechanical strength indicator 1: 19 % Mechanical strength indicator 2: 25 % Coning: 27 % No significant increase in mass but improved robustness

should be robust against all process variations

Robustness: Simulation of Product Robustness

Rotor design is always evaluated using worst case material to ensure robustness due to material properties

	Name	Parameter type	Reference value	Constant	PDF	Туре	Mean	Std. Dev.	CoV	Dist	1
1	Dpar_OD	Stochastic	274		\wedge	NORMAL	274	0.040161	0.0146573 %	274;	
2	Dpar_ID	Stochastic	182		\wedge	NORMAL	182	0.040161	0.0220665 %	182;1	
3	Dpar_Thickness	Stochastic	10	2	\wedge	NORMAL	10	0.023256	0.23256 %	10; 0	
4	Dpar_BellHeight	Stochastic	39		\wedge	NORMAL	39	0.0251	0.064359 %	39; O	Ш
5	Dpar_BellOD	Stochastic	169		r	NORMAL	169	0.060241	0.0356456 %	169;	
6	Dpar_BellEnd_Thickness	Stochastic	5.25	8	A	NORMAL	5.25	0.050201	0.95621 %	5.25;	

Simulation of product robustness

Robustness: Prediction vs Test Results

Worst case margin to limit Strength indicator 1: 15% Strength indicator 2: 22% Coning: 19% Verification by sample testing

High probability of parts meeting specification

Key driving dimensions for strength and coning characteristics identified for production control to ensure product quality

© ZF Friedrichshafen AG, 2015

777

Summary

- Product requirements presented a design challenge
- Detailed analysis was performed to understand key parameters driving product performance
- The product design was optimized to increase profit while meeting requirements
- Proposed optimized design to was analyzed to ensure robustness of design
 - Dimensions critical to quality were defined to ensure performance under variation in production conditions

Thank you for your attention

THE POWER OF²

driving motion, mobility and safety

ZF Friedrichshafen AG behält sich sämtliche Rechte an den gezeigten technischen Informationen einschließlich der Rechte zur Hinterlegung von Schutzrechtsanmeldungen und an daraus entstehenden Schutzrechten im In- und Ausland vor. ZF Friedrichshafen AG reserves all rights regarding the shown technical information including the right to file industrial property right applications and the industrial property rights resulting from these in Germany and abroad.