Optimierung einer Positionier- und Haltevorrichtung nach Steifigkeits- und Gewichtsgesichtspunkten

Thomas Most Dynardo GmbH, Weimar dynardo

Christoph Birenbaum, Jochen Burkhardt Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA, Stuttgart

Contents

- Fraunhofer Institute for Manufacturing Engineering and Automation IPA
- Introduction
- Sensitivity Analysis
- Multi-Objective Optimization
- Single-Objective Optimization

Contents

Fraunhofer Institute for Manufacturing Engineering and Automation IPA

Introduction

- Sensitivity Analysis
- Multi-Objective Optimization
- Single-Objective Optimization

Fraunhofer IPA as a technology consultant and innovation driver

- Third-largest institute of the Fraunhofer-Gesellschaft; based in Stuttgart
- 1,000 employees 1 64.2 million euros operating budget 1 20.4 million euros industrial revenues
- Expertise in manufacturing engineering and automation since 1959

Note: key figures for 2015

Our Business Units Unparalleled diversity

dyr

Business units and working fields An interdisciplinary organization

			oductions Surface Automation							Process Technology			
Automotive Machinery and Equipment Industry Electronics and Microsystems Power Industry Medical Engineering and Biotechnology Process Industry	Sustainable Production and Quality Management	Factory Planning and Production Management	Efficiency Systems	Coating Systems and Painting Technology	Electroplating	Controls and Drives	Robot and Assistive Systems	Biomechatronic Systems	Laboratory Automation and Biomanufacturing Engineering	Ultraclean Technology and Micromanufacturing	Machine Vision and Signal Processing	Functional Materials	Lightweight Construction Technologies

Competence Center DiglTools for Manufacturing

Stuttgart Production Academy **Additional Locations Application Center** Fraunhofer Austria Fraunhofer Project Group Fraunhofer Project Center Fraunhofer Project Group Fraunhofer Project Group for Large Structures in Research GmbH, Wien Production Management for electroactive Polymers for Automation in Medicine Regenerative Production, Production and at AIST Kansai and Biotechnology PAMB, Bayreuth **Production Engineering** and Informatics PMI, Logistics Management Mannheim AGP, Rostock **Budapest** Version as of: 01.2016

6

Department Lightweight Construction Technologies

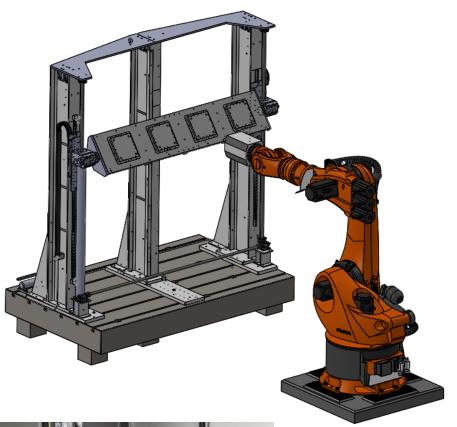
Our expertise

Health protection and dust & chip extraction technologies	Lightweight design	Quality assessment	Sawing technologies	Joining technologies	Machining and cutting technologies
 Adapted extraction strategies and airflow-optimized extraction hoods Designing and testing extraction hoods and systems Highly effective extraction solutions 	 Design of fiber reinforced composite materials FEM simulation Construction methods Parametric optimization Topology optimization 	 Solutions for the acquisition and documentation of quality data Concepts for the automated acquisition of quality data Data capture and analysis 	 Machining and cutting processes Saw blade design and optimization Ultrasonic sawing 	 Bonding Friction stir welding 	 Coating technology Cooling and lubrication systems Robot-assisted machining Ultrasonic-assisted machining Machining processes for lightweight materials Simulation of machining processes

dynardo

Contents

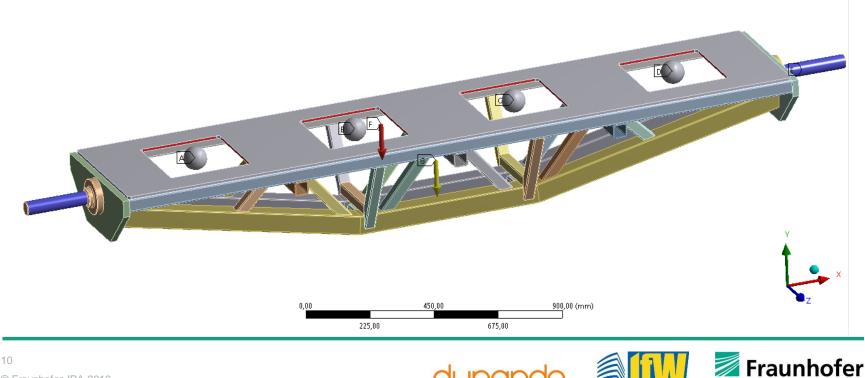
Fraunhofer Institute for Manufacturing Engineering and Automation IPA

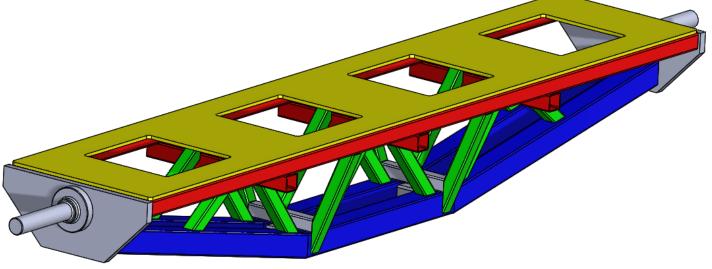

Introduction

- Sensitivity Analysis
- Multi-Objective Optimization
- Single-Objective Optimization

Motivation

- Robotic system for drilling large structural components
- Rating of robot kinematics and machining quality
- Test device is used as a dummy for large structural components
- High stiffness and light weight (because of manual adjustment) are required

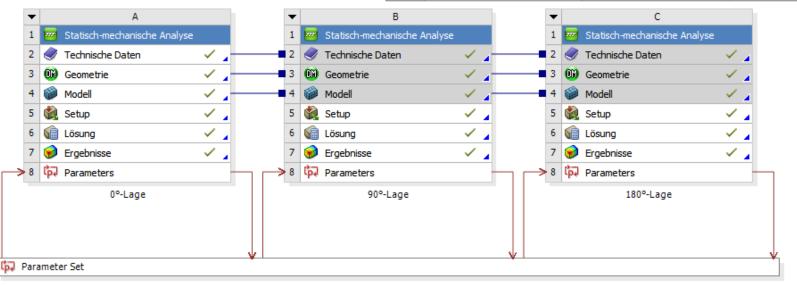



Loading

- 4 working pieces as lumped masses
- External force represents pressure during the working process
- Influence of the gravity is studied at 0°, 90° and 180° position
- Fixed support at the arbors on left and right side

Optimization Parameters

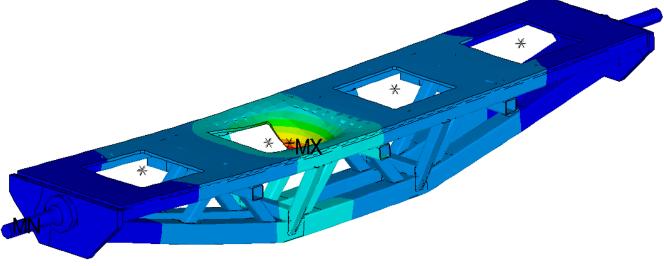
- Thickness of upper plate (initial: 10 mm)
- Width, height and thickness of upper beams (50 x 50 x 3 mm³)
- Width, height and thickness of middle beams (40 x 40 x 3 mm³)
- Width, height and thickness of lower beams (70 x 70 x 4 mm³)
- 2 materials for the beam structure: Steel or Aluminium (upper plate is Aluminium)



Simulation Model

- Three load cases in ANSYS Workbench
- Deformations of 3 load cases as outputs in parameter set

	А	В	с	D
1	ID	Parameter Name	Value	Unit
2	Input Parameters			
3	표 🚾 0°-Lage (A1)			
*	🗘 New input parameter	New name	New expression	
39	Output Parameters			
40	🖃 🚾 0°-Lage (A1)			
41	P36	Total_mass	207,19	kg
42	P55	Maximum_displacement_0	0,12087	mm
43	🖃 🚾 90°-Lage (B1)			
44	P56	Maximum_displacement_90	0,097235	mm
45	🖃 🚾 180°-Lage (C1)			
46	P57	Maximum_displacement_180	0,067609	mm
*	New output parameter		New expression	
48	Charts			

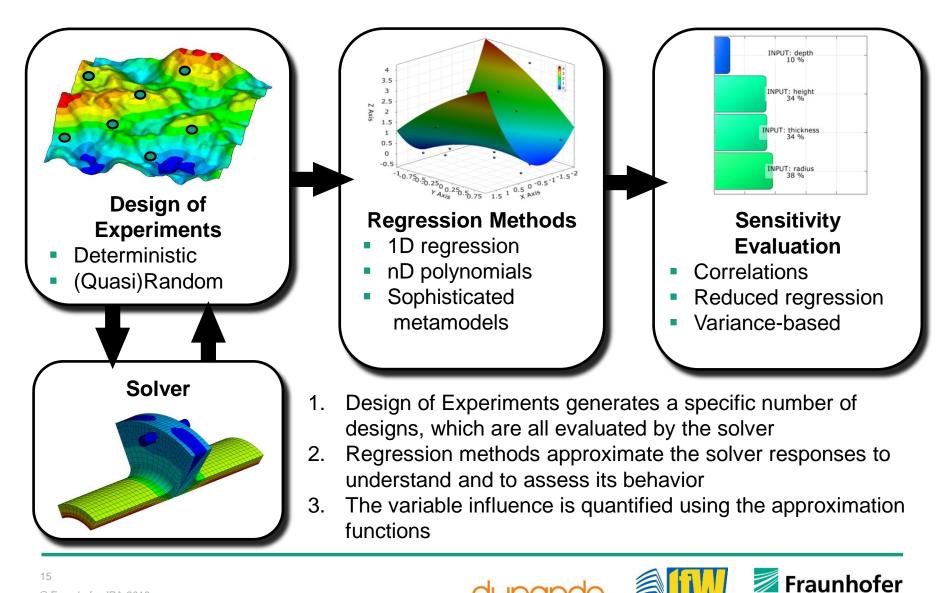

Optimization Task

Objective functions

- Minimization of mass
- Minimization of deformation of the beam structure for a positioning in 0°, 90° and 180°

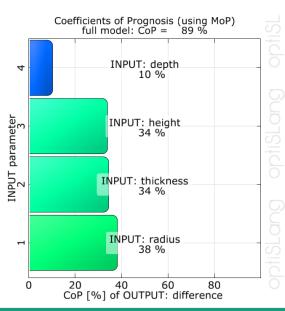
Initial Design

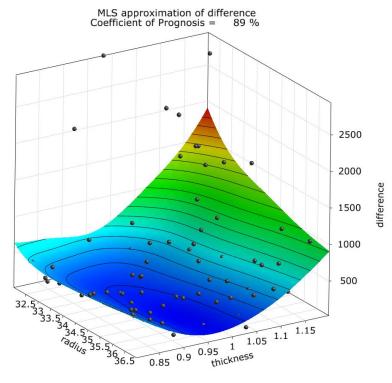
- Mass: 207,2 kg
- **Deformations:**
 - 0°- position: 0,12 mm
 - 90°- position: 0,10 mm
 - 180° position: 0,07 mm



Contents

- Fraunhofer Institute for Manufacturing Engineering and Automation IPA
- Introduction
- Sensitivity Analysis
- Multi-Objective Optimization
- Single-Objective Optimization

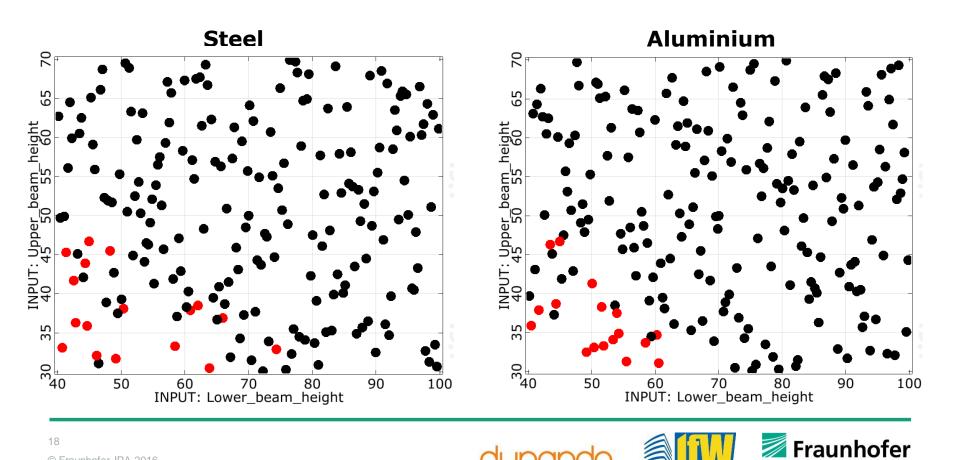


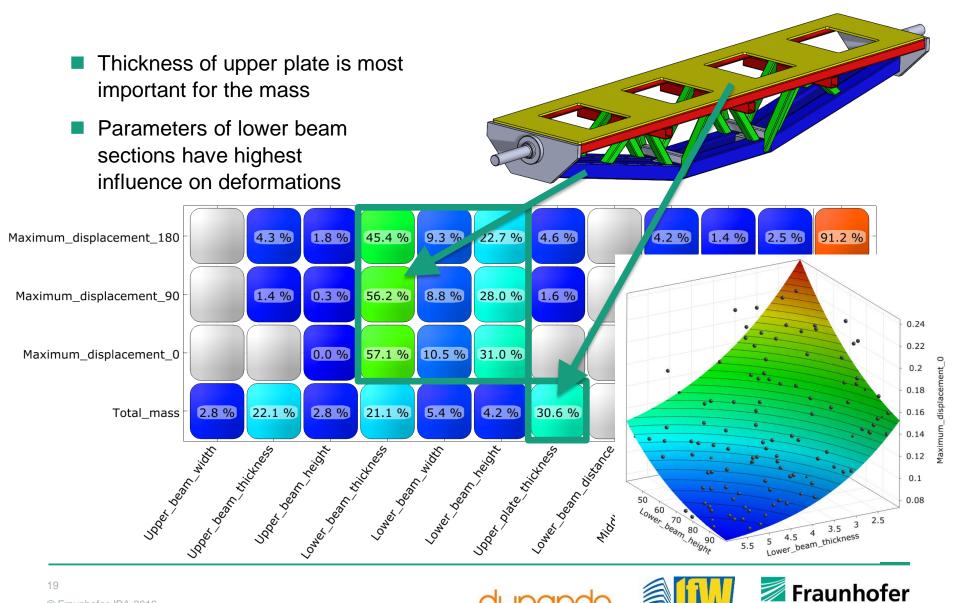

Flowchart of Sensitivity Analysis

Metamodel of Optimal Prognosis (MOP)

- Approximation of solver output by fast surrogate model
- Reduction of input space to get best compromise between available information (samples) and model representation (number of inputs)
- Determination of optimal approximation model
- Assessment of approximation quality
- Evaluation of variable sensitivities

Definition of Parameter Bounds


•	А	•		В	~	С					
	atisch-mechanische Analyse	1		atisch-mechanische Analyse		Statisch-mechanische Analy					
-		2	<u> </u>			Technische Daten	×				
	ometrie		-			Geometrie	× .				
4 🧼 Moo 5 🍓 Set						Modell Setup	× .				
6 📢 Lös	•	-	ing se fill Lö		-	Lösung	× 4				
7 🥩 Erg			_			Ergebnisse	× .				
→ 8 🛱 Par			-	arameters		Parameters					
	0°-Lage			90°-Lage		180°-Lage					
				Name	Parameter type	Reference value	Constant	Resolution	R	ange	Range plot
🛱 Parameter Se	et 💊		1	Lower_beam_distance	Optimization	80		Continuous	60	100	
			2	Lower_beam_height	Optimization	70		Continuous	40	100	
			3	Lower_beam_thickness	Optimization	4		Continuous	2	6	
			4	Lower_beam_width	Optimization	70		Continuous	40	100	
		_	5	Middle_beam_height	Optimization 40			Continuous	30	70	
			6	Middle_beam_thickness	Optimization	3		Continuous	2	6	
			7	Middle_beam_width	Optimization	40		Continuous	30	70	
			8	Upper_beam_height	Optimization	50		Continuous	30	70	
			9	Upper_beam_thickness	Optimization	3		Continuous	2	6	
			10	Upper_beam_width	Optimization	50		Continuous	30	70	
			11	Upper_plate_thickness	Optimization	10		Continuous	10	30	



Design of Experiments

- 200 Latin Hypercube Samples
- 10% failed designs due to conflicting geometry parameters

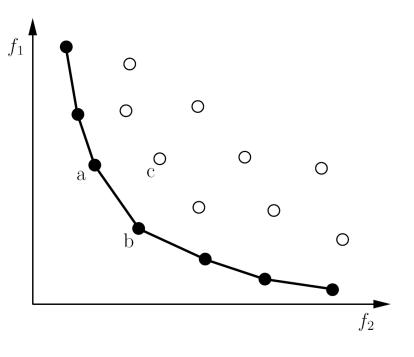
Influence of Parameters

Contents

- Fraunhofer Institute for Manufacturing Engineering and Automation IPA
- Introduction
- Sensitivity Analysis
- Multi-Objective Optimization
- Single-Objective Optimization

The Multi-Objective Optimization Task

Several optimization criteria are formulated in terms of the input variables x


$$f_1(\mathbf{x}) \to \min$$

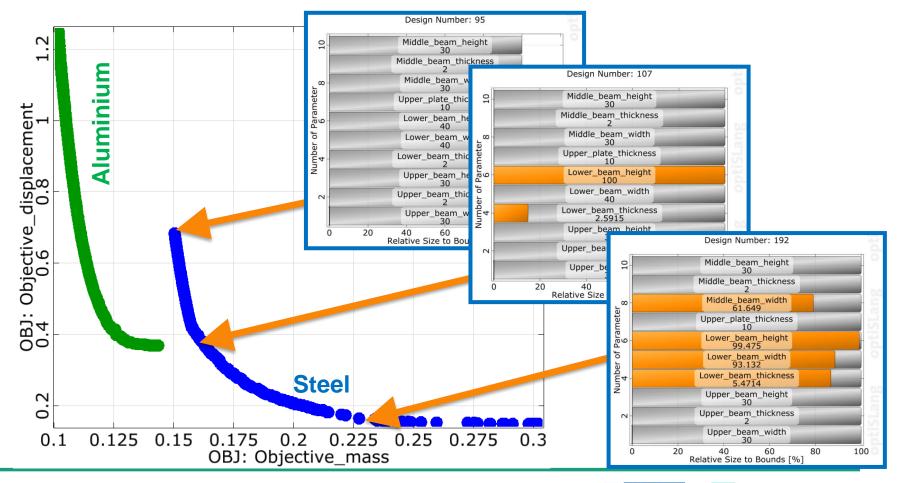
 $f_n(\mathbf{x}) \to \min$

- Uncountable set of solutions, if criteria are contradicting
- Good compromise between different objectives is searched

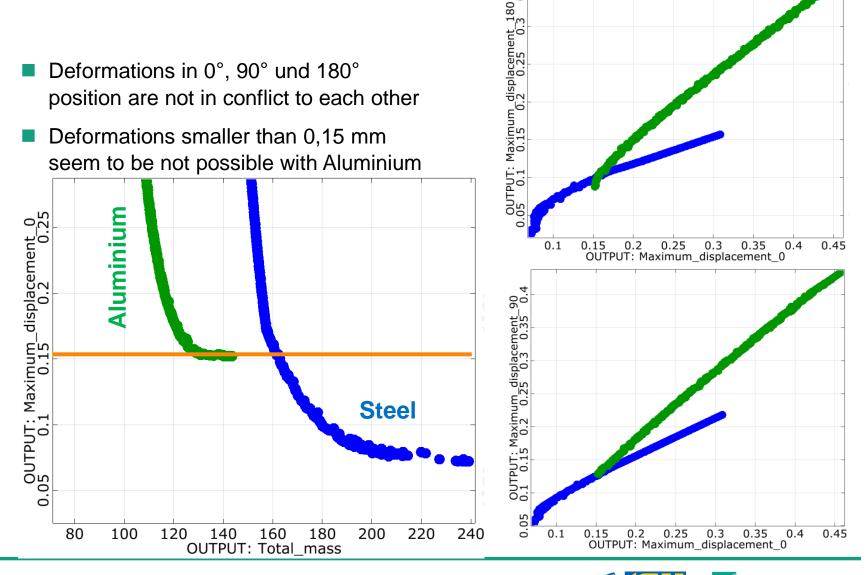
A Posteriori Preference Articulation

- Search before making decisions
- Find Pareto optimal solutions and select the most suitable

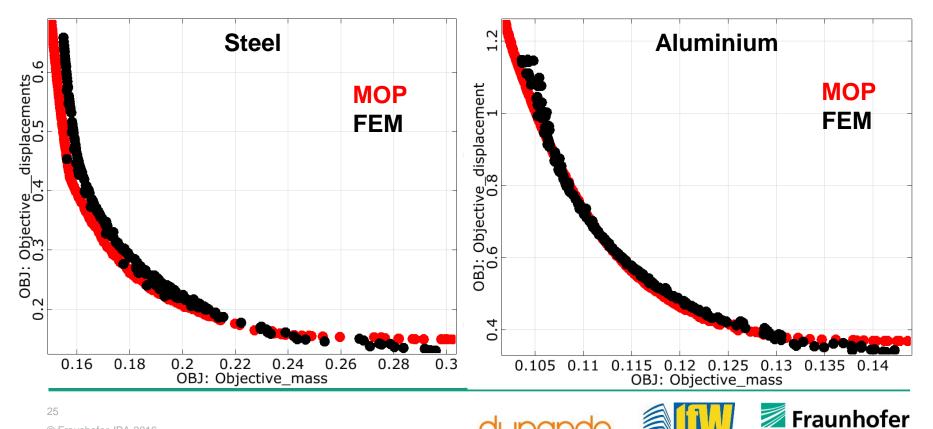
Definition of Optimization Goals

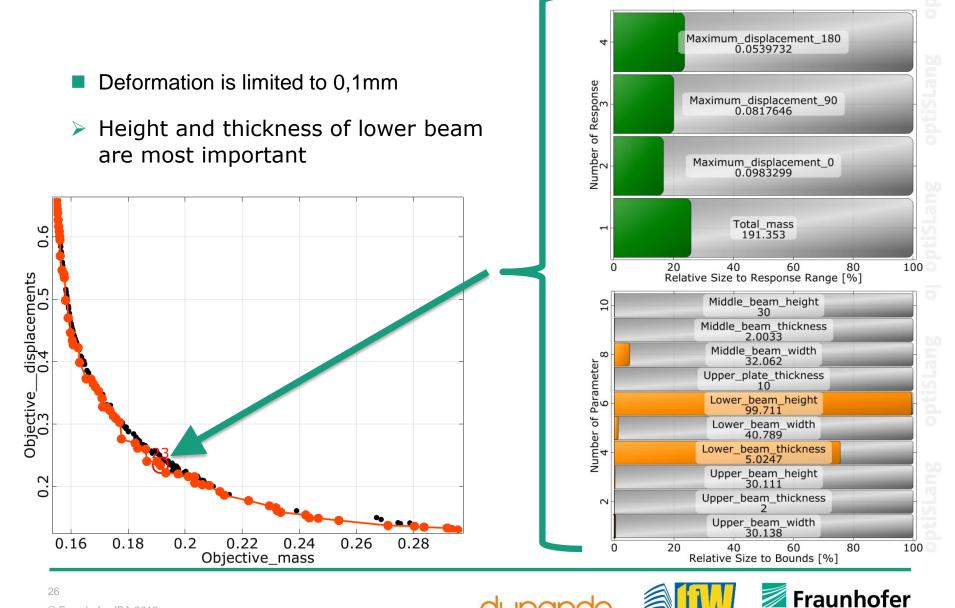

- Goal 1: Minimization of the mass (initial 207 kg)
- Goal 2: Minimization of sum of deformations in 0°, 90° und 180° position (initial 0,26 mm)

Objectives									
Name	Criterion	Expression	Value						
Objective_mass	MIN	Total_mass/1000	0.207195						
Objective_displacements	MIN	Maximum_displacement_0+Maximum_displacement_90+Maximum_displacement_180	0.285717						
new									


Multi-Objective Optimization using the MOP-Approximation

Steel construction can obtain much smaller deformations with higher mass


Multi-Objective Optimization with MOP-Approximation



Validation of Approximated Pareto-Frontier

Pareto designs on MOP-approximation agree very well with simulation results

Optimal Design at the Pareto-Frontier

RESPONSE DATA: (Design Number: 23)

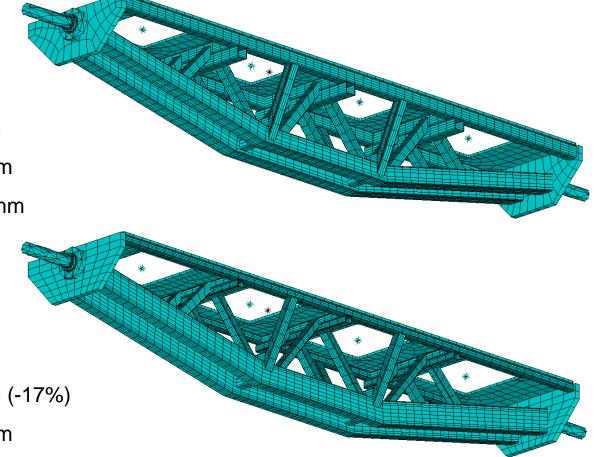
Contents

- Fraunhofer Institute for Manufacturing Engineering and Automation IPA
- Introduction
- Sensitivity Analysis
- Multi-Objective Optimization
- Single-Objective Optimization

Single-Objective Optimization

- Optimization goal: minimization of the mass
- Material of beams: Steel
- Constraints: Deformations (0°, 90° und 180°) smaller than 0,1mm

Name	Criterion		Expression	Value							
Objective	MIN		Total_mass	207.195							
new											
Constraints											
Name	Left side expression	Criterion	Right side expression	Value							
Constraint_0	Maximum_displacement_0	≤	0.1	0.120873 ≤ 0.1							
Constraint_90	Maximum_displacement_90	≤	0.1	0.0972345 ≤ 0.1							
Constraint_180	Maximum_displacement_180	≤	0.1	0.0676094 ≤ 0.1							
new											


Optimal Design 1: Continuous Design Parameters

Initial Design

- Mass: 207,2 kg
- Deformations:
 - 0°- position: 0,12 mm
 - 90°- position: 0,10 mm
 - 180°- position: 0,07 mm

Optimized Design

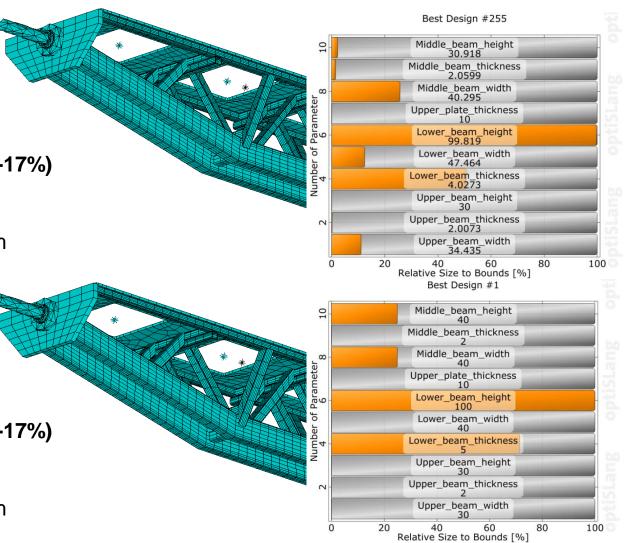
- Mass: 186,1 kg (-10%)
- Deformations:
 - 0°- position: 0,10 mm (-17%)
 - 90°- position: 0,08 mm
 - 180°- position: 0,05 mm

Optimization using Discrete Design Parameters

	Abmessun H x B x T	g	kalt- gefertigt EN 10219 M	Quer- schnitt- fläche A	Ī		1			have be Ipplier pro	en chosen ac ofiles	cord	ing to)
	mm		kg/m	cm ²	н –									
	40 x 20 x	2,0	1,68	2,14										
		2,5	2,03	2,59	¥									
		3,0	2,36	3,01	÷									
		3,0	2,83	3,61		Name	Devenuetes true	Reference value	Constant	Operation	Resolution	P	ange	Range plot
			2,83	3,61			Parameter type	Reference value		Operation	Resolution			Range plot
ſ	50 x 20 x		2,83	3,61	1	Lower_beam_distance	Optimization	80	V		Continuous	60	100	
	50 x 30 x	2,0	2,31	2,94	2	Lower_beam_height	Optimization	100			Ordinal discrete by value	40; 50; 60	· 80· 100	
		2,5	2,82	3,59	-	zoneocon_ne.gn	optimization					,,	, 00, 200	
		3,0	3,30	4,21	3	Lower_beam_thickness	Optimization	4			Ordinal discrete by value	2.5; 3; 4;	5; 6	
, I	60 v 70 v	4,0	4,20	5,35				<i>c</i> a				10 50 50		
÷.	60 x 30 x 60 x 40 x	3,0 2,0	3,77	4,81 3,74	4	Lower_beam_width	Optimization	60			Ordinal discrete by value	40; 50; 60	; 80; 100	
	00 x 40 x	2,0	2,93 3,60	4,59	5	Middle_beam_height	Dependent	40		Middle_beam_width				
		2,5 3,0	4,25	5,41										
		3,0 4,0	4,23 5,45	6,95	6	Middle_beam_thickness	Optimization	2			Ordinal discrete by value	2; 2.5; 3; 4	4; 5	
		5,0	6,56	8,36	7	Middle beam width	Optimization	40			Ordinal discrete by value	30; 40; 50	· 60· 70	
	70 x 40 x	3,0	4,72	6,01	ľ.	initialit_beam_math	optimization					50, 10, 50	,,	
r		4,0	6,08	7,75	8	Upper_beam_height	Dependent	30		Upper_beam_width				
	70 x 50 x	2,0	3,56	4,54		llanan kasar thiabaaaa	Ontinination	2			Ordinal diameta huurakur	2, 25, 2	L. E	
		2,5	4,39	5,59	9	Upper_beam_thickness	Optimization	2			Ordinal discrete by value	2; 2.5; 3;	i;)	
12	-		- 10	6,61	10	Upper_beam_width	Optimization	30			Ordinal discrete by value	30; 40; 50	; 60; 70	
1	Th	vsser	Krupp	8,55										
-				10,40	11	Upper_plate_thickness	Optimization	10	V		Continuous	10	30	

30

🗾 Fraunhofer


Optimal Design 2: Discrete Design Parameters

Optimized Design 1

- Mass: 186,1 kg (-10%)
- **Deformations:**
 - 0°- position: 0,10 mm (-17%)
 - 90°- position: 0,08 mm
 - 180°- position: 0,05 mm

Optimized Design 2

- Mass: 193,3 kg (-7%)
- **Deformations:**
 - 0°- position: 0,10 mm (-17%)
 - 90°- position: 0,08 mm
 - 180°- position: 0,05 mm

Summary

- Sensitivity analysis helps to better understand the physical phenomena and to check or validate the simulation model
- Identification of important parameters helps to significantly simplify and accelerate the optimization task
- MOP-approximation can be used for fast pre-optimization step or multi-objective case studies

Thank you

For more information please visit our homepage: www.dynardo.com www.ipa.fraunhofer.de

