

Premium Sponsors

Exhibitors

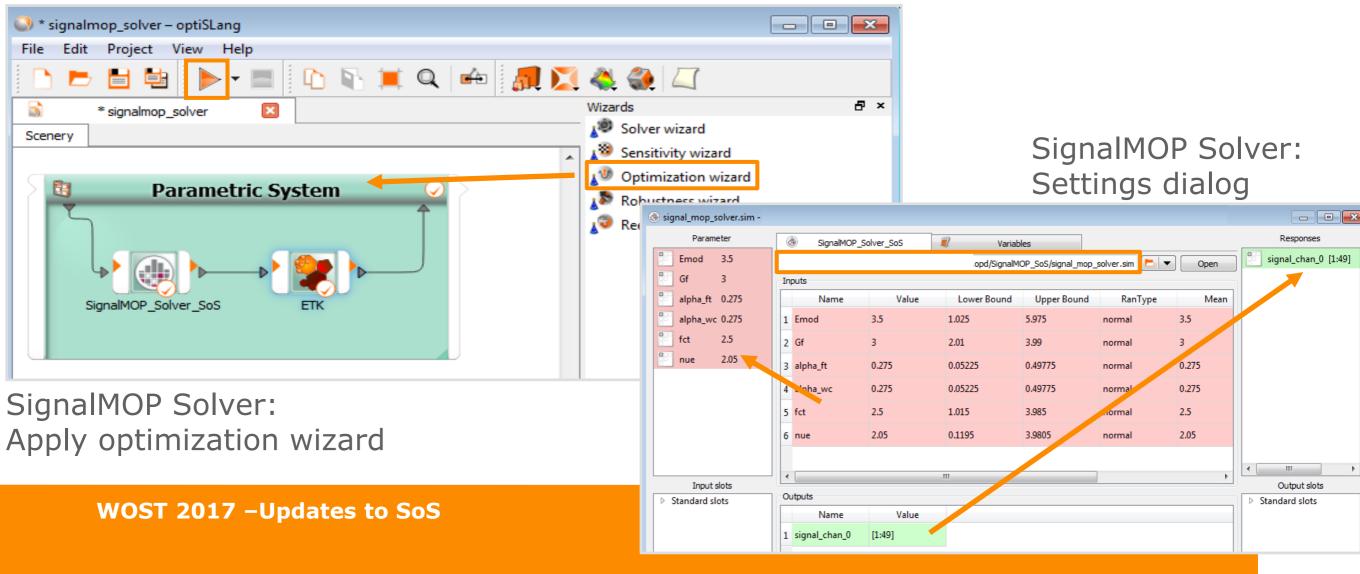
LIGHTTRANS

IN MAGNA

New developments in Statistics on Structures

Sebastian Wolff

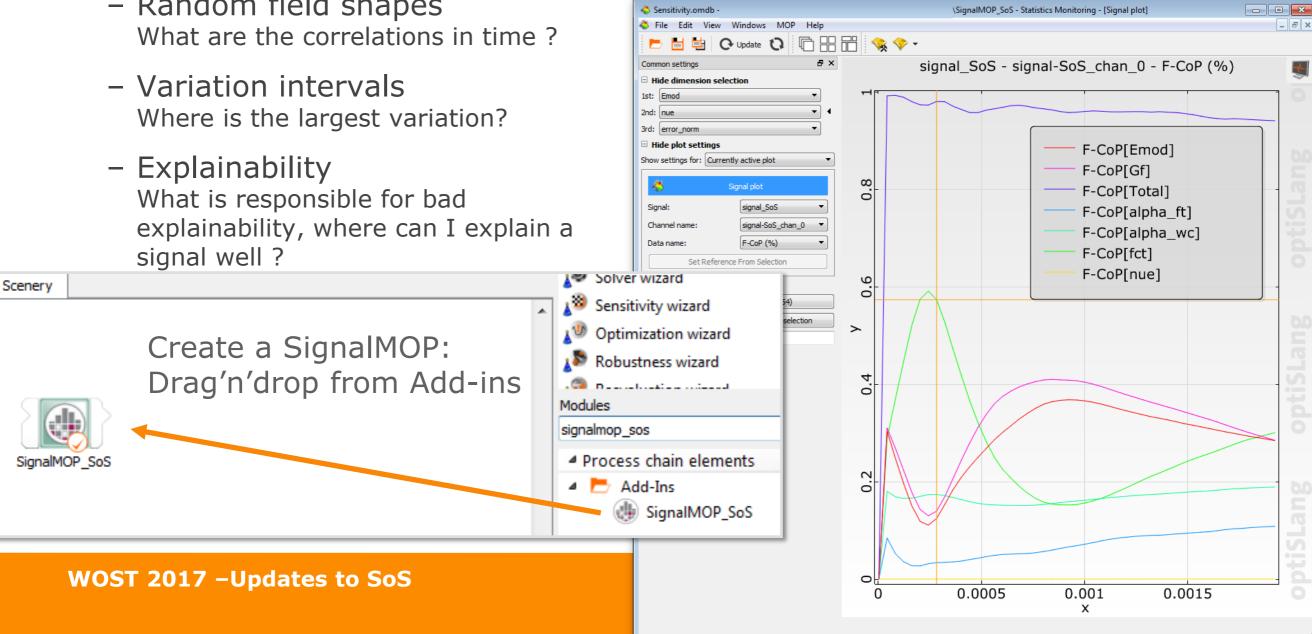
New developments in SoS Overview


- Releases since WOST 2016
 - SoS 3.3.0 March 2017
 - SoS 3.3.1 May 2017

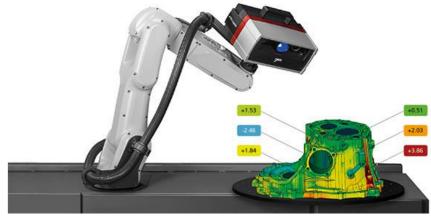
for optiSLang 6.0 for optiSLang 6.1

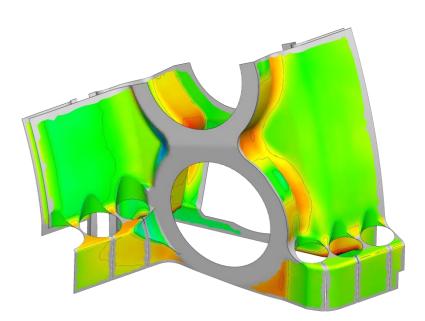
- Major advances in these fields:
 - SignalMOP in optiSLang
 - Geometric variations
 - Shape optimization
 - Field meta models
 - Process integration

Signal MOP


- Create a meta model for a complete signal !
 - Direct integration in optiSLang 6.1
- Used if
 - Location of interest is not yet known
 - Distribution of signal data in time is of importance

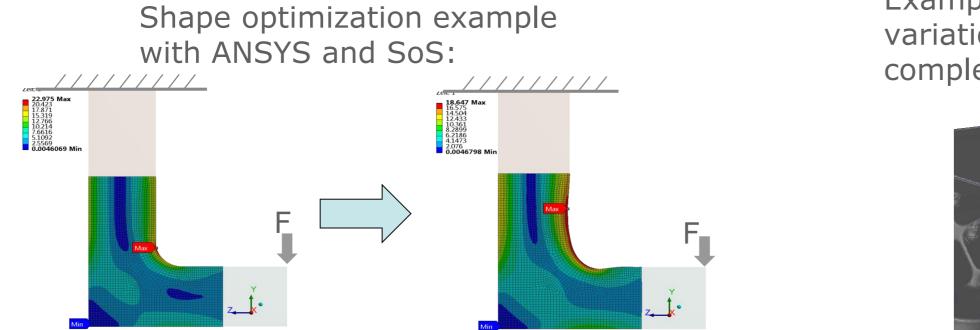
Signal MOP

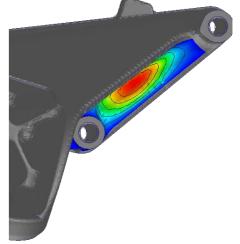

- Analyze
 - Sensitivities Where is which input parameter important?
 - Random field shapes


Sensitivity analysis with SignalMOP directly in optiSLang 6.1 post processing

Generation of geometric imperfections

- Motivation:
 - Create a statistical model based on measurements (laser scans) of true geometry, e.g. after production
 - Generate new random geometries which reflect the statistical distribution as found in reality
- New developments:
 - Define regions on your mesh which are not part of the variation (e.g. polished parts, screws, etc.)
 - Change coordinates of nodes in the interior of a volume as well
 - Advanced algorithms to stabilize the deformed meshes (e.g. mesh smoothening, ensure positive Jacobians)
- Generate relatively large deformations !




With courtesy of SIEMENS, Source: Lohse et all WOST 2016

Shape optimization

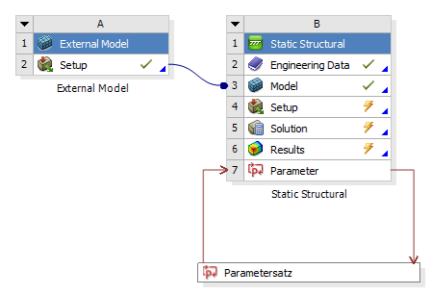
- New ways to auto-parameterize geometric variations of FEM meshes to be used in free-form shape optimization
 - Change FEM node coordinates directly
 - Define smooth tent-shaped variation patterns to remove/add material in optimization after a topology optimization
- Reduce number of required CAD cycles after optimization

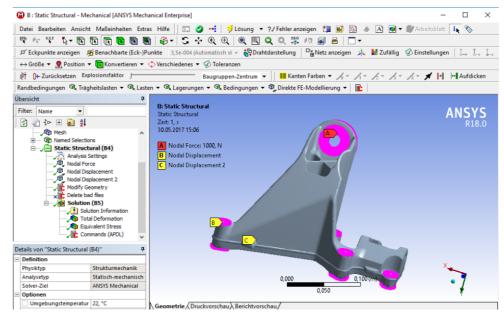
Example of a single variation shape on a complex geometry:

WOST 2017 – Updates to SoS

Field meta models

- FMOP = Approximating meta model for dynamic processes (signals) and 3D data (e.g. stresses, strains, displacements)
- New developments:
 - Improved usability (One-click solution in SoS GUI, no optiSLang required)
 - Custom integration node in optiSLang 6 (FMOP solver)
 - Improved accuracy for computing the prognosis quality even in large dimensions (SoS 3.3.0)
 - Improved accuracy for computing the sensitivities of input parameters even in large dimensions (SoS 3.3.2)
- Under development: Binary interface to FMOP solver for approximation in real-time


File Edit Statistics F	ield meta mod	els Help					
			Edit Visuali	ze Command log			
Foolbox	₽×	Field quantities		Scalar parameters			
🔁 Import		Quantity	Туре				
Export		pstrain	element				
		thickness	element				
🔑 Edit				blank_thickness_2			
			3	blank_thickness_3			
Statistics				blank_thickness_4			
🌵 Field data models				frict_blank_binder_blank			
Trelu data models		1		frict_blank_binder_top			
Create FMOP	4			poisson_ratio			
Empirical random field model				real_mat_abs_1			


	pstrain				
F-CoP[E Modul]	0.09 %				
F-CoP[Total]	95.05 %				
F-CoP[blank_thickness_1]	9.49 %				
F-CoP[frict_blank_binder_blank]	0.04 %				
F-CoP[frict_blank_binder_top]	0.03 %				
F-CoP[poisson_ratio]	0.21 %				
F-CoP[real_mat_abs_1]	2.52 %				
F-CoP[real_mat_ord_1]	23.51 %				
F-CoP[rho]	(
	Above				

Process integration

- Many new and improved file formats
 - ANSYS RST: Import results from structural analysis directly into SoS
 - ANSYS CDB: Import meshes and components directly into SoS
 - ANSYS APDL: Modify geometries through APDL
 - LS-DYNA: Now with support for many elements including shells and volumes
 - Structured grids: generic format for import of large scale 2d grids
- Established workflows for modifying geometries with ANSYS Workbench and optiSLang

WOST 2017 – Updates to SoS

Process integration

- Under development:
 - Direct integration of SoS into ANSYS Workbench
 - Objective: safe and easy-to-use generation of modified geometries in shape optimization and robustness analysis

Project Schematic															
							1								
	Ŧ		A			•		В			•		С		
	1	1	Mechanical Model			1	🚯 SoS G	enerate (Beta)			1		Static Structural		
	2	9	Engineering Data	× 🔒		2	🌐 Setup		× ·		2	Ì	Engineering Data	~	
	3	00	Geometry	 			So:	5 Generate			3	6	Model	2	
	4	@	Model	× 🖌	/						4	٢	Setup	7	
-			Mechanical Model								5	G	Solution	7	
											6	6	Results	7	4
													Static Structural		

New developments in SoS Summary

- Current version: SoS 3.3.1 (to be used with optiSLang 6.1)
- Major advances in these fields:
 - SignalMOP in optiSLang
 - Geometric variations in tolerance analysis
 - Shape optimization
 - Field meta models (FMOP) in 1d (e.g. signals), 2d (e.g. engine maps), 3d (e.g. FEM models)
 - Process integration with ANSYS Workbench

Premium Sponsors

Exhibitors

LIGHTTRANS

IN MAGNA

