

presented at the 14th Weimar Optimization and Stochastic Days 2017 Source: www.dynardo.de/en/library

Influence of manufacturing tolerances on fatigue life estimation R. Pschera, R. Lampert, S. Wolff

Overview

ALGOAWA??

Problem and Objective

Geometry optimization can be done easily using optiSLang presuming a managed workflow

Geometry may be considered as a random variable. Suitable descriptions of their variations is necessary. The simulation process has to be managed in a workflow.

The stochastic description of a real system presumes a managed workflow and a suitable description of variations

Material properties and geometry may be considered as random variables. Suitable descriptions of their variations is necessary. The simulation process has to be managed in a workflow.

How to Define the Robustness of a Design

 Intuitively: The performance of a robust design is largely unaffected by random perturbations

- Variance indicator: The coefficient of variation (CV) of the objective function and/or constraint values is smaller than the CV of the input variables
- **Sigma level**: The interval mean+/- sigma level does not reach an undesired performance (e.g. design for six-sigma)
- **Probability indicator**: The probability of reaching undesired performance is smaller than an acceptable value

Robustness Evaluation using optiSLang and SoS

MAGNA

Depending on available data:

- No or only a single measurement: Use assumptions Synthetic random field model Test if the field variations have impact
- 2. Few number of measurements:

Assumed correlation, but empirical mean/sigma Synthetic random field model Test if "true" magnitude of variation is important

3. Many measurements:

Anisotropic, inhomogeneous, Non-Gaussian Empirical random field model Model accurate statistics using large test series

- Measured spatial field variations:
 - Geometries, thinning, strains, etc.
- Spatial field variations from simulation:
 - Displacements, thinning, remaining stresses, plastic strains, etc.
- New parameters "z": describe the full variation shape pattern of the measured geometry, strain field, thinning etc.

A workflow is set up in optiSlang linking SoS, ANSYS WB and FEMFAT to evaluate robustness of the cast structure

- When material, geometry, process or environmental scatter is significantly affecting the performance of important response values
- When significant scatter of performance is observed in reality
- and there is a doubt that safety distances may be too small or safety distances should be minimized for economical reasons

Fully automatic transfer of data from the each single task to another

ALGOAWA??

Random Geometries

Generate random geometry with SoS

MAGNA

Par	ameter	Start designs	Nom	inal design	Crite	ria Dynamic sam	pling C	ther	Resul	t designs				
		Name		Parameter	type	Reference value	Constant	Valu	e type	Resolution	Range	ange plo	PDF	Туре
L	amp_dis	spnodeshape	1_	Stochastic		0		REAL		Continuo			\frown	NO
2	amp_dis	spnodeshape_	_2_	Stochastic		0		REAL		Continuo			\wedge	NO
	amp_dis	spnodeshape_	_3_	Stochastic		0		REAL		Continuo			\wedge	NO
	amp_dis	spnodeshape_	_4_	Stochastic		0		REAL		Continuo			\wedge	NO
	amp_dis	spnodeshape_	5_	Stochastic		0		REAL		Continuo			\wedge	NO
5	amp_dis	spnodeshape_	6_	Stochastic		0		REAL		Continuo			\wedge	NO
	amp_dis	spnodeshape_	7_	Stochastic		0		REAL		Continuo			\wedge	NO
	amp_dis	spnodeshape_	8_	Stochastic		0		REAL		Continuo			\wedge	NO
)	amp_dis	spnodeshape	9_	Stochastic		0		REAL		Continuo			\wedge	NO
0.	amp_dis	spnodeshape_	_10_	Stochastic		0		REAL		Continuo			\wedge	NO
1	amp_dis	spnodeshape	_11_	Stochastic		0		REAL		Continuo			\wedge	NO
2	amn die	sn node shane	12	Stochastic		0		REAL		Continue			\wedge	NO

- 20 parameters as coefficient
- For 20 different spatial distributions (shapes) used
- All of them are normal distributed
- Mean value and standard deviation are obtained from analysis of measurements
- Enable displacements into negative and positive directions (Add/Remove material)

Generate random geometry with SoS: New models in 3.3.1

© Advanced Engineering / Disclosure or duplication without consent is prohibited

ALTORNA /

Static Mechanical Analysis

Static mechanical evaluation with ANSYS WB 18.0

MAGNA

- Geometry is changed inside of the Setup component
- The result file, containing stresses is used for following fatigue evaluation
- Additional results like max. displacements and max. equivalent stresses are considered as responses

Static mechanical evaluation with ANSYS WB 18.0

Å MAGNA

ALGOAWA??

Fatigue Assessment

FEMFAT is developed in co-operation with computational engineers in our structural analysis department at MAGNA in St. Valentin, Austria.

© Advanced Engineering / Disclosure or duplication without consent is prohibited

The exclusive analysis of stress in a traditional way doesn't often reveal damage occurrence at the right point.

Only modern fatigue analysis tools are capable of predicting critical crack locations and the number of load cycles until failure.

FEMFAT Modules

Å MAGNA

FEMFAT basic

Standard/Minimum configuration; includes all the interfaces and material database, handles 2 stress states plus one assembly load case for life- or safety factor analysis

A software module for assessing static safety factors in combination with BASIC or MAX

FEMFAT heat

For low cycle fatigue analysis of components which are exposed to thermo-mechanical loads (e.g. cylinder heads, exhaust manifolds) and suffer from mechanical, creep and oxidation damage

A software module for assessing damage from measured strains and comparing stresses from FEA and testing

A software module for fatigue life prediction on layered infinite fiber reinforced materials

Module for fatigue analysis of MultiAXially loaded components using time histories of loads or series of stress states

FEMFAT parallel

Take the advantage to use more than only one CPU of your multicore workstation to speed up your analysis

Module for predicting fatigue of spotjoints (welds, rivets) in FE-shell structures

FEMFAT plast

Module to consider the effect of mean stress and/or amplitude stress rearrangement from linear stresses when local plastic deformation occurs using Neuber correction

FAST 3D post-processor to display the FE-model, fatigue results and stresses including a feature to generate animations and 3D pdf files. Unmatched for weld seam definition

Module for fatigue analysis of welding seams for steel and aluminum using notch stress method and standards (DIN 15018, EUROCODE 3 and 9, BS 7608, IIW)

Random response fatigue analysis using PSD (Power Spectral Densities) loads

Complex loading situations can be assessed in an accurate and efficient way using FEMFAT max

Transient load condition

In order to analyze the interaction of all loads, all stress information is superimposed, transformed to an equivalent stress and rain-flow counted. Then the operational strength analysis begins with the help of local S/N curves including relevant influences such as notches, mean stress, isothermal temperature,...

Results

- damage values,
- safety factors or
- safety factors related to a defined cycle number

Information of structure is read into FEMFAT using the .cdb interface

The loading is applied by unit loadcase and the channel history

MAGNA

Material parameters for fatigue analysis are generated in FEMFAT and stored in a .ffd file

MAGNA

The analysis target is an "Endurance Safety Factor" with respect to a constant mean stress.

FEMFAT 5.2a - Motorenlager	rkonsole*		
File View Analysis Option	is Templates Help		
🔿 🔒 🚰 🖪 📓	🚺 📝 📲 Current Working Directory: L:/FE	MFAT/15_Veroeffentlichungen,Papers/CASCON2017/FEMFAT	FEMFA
ChannelMAX	Analysis Parameters		
FE Entities	Analysis Target		
Groups	O Damage MINER	Modified -	
Channels	Endurance Safety Factor Sig_m	= const. Cycles: 0.0e+0	
Material Data	Static Safety Factor BREAK FEMFA	T 5.0 Criterion: Ultimate Strength	
Node Characteristics	Stress/Strain Comparison STRAIN Comp		
	 Degree of Multiaxiality 		
Charles Cares Data	Global Parameters Analysis Filter Cutting Plane F	Parameters	
Strain Gage Data	Stress Selection		
Y Analysis Parameters	Automatic	•	
Scratch Setting	Survival Probability		
🔚 Output	90.000000	[%]	
Report	Rainflow Counting	64	
📫 Analyze	Painflow Counting Method: EEMEAT 5.1		
Visualization	Amplitude Limit for Class Filter: 0.0	W/mm21	
	High Resolution	arriniz_j	
	Result Group	Results Visualization at	
	Group Name: Most Critical Nodes Group	Particular Node	
D A A A	Number of Nodes: 10		
BASIC		Label:	
ChannelMAX			
TransMAX			
HEAT Sehitoglu			
SPECTRAL			
SPOT Remeshing			
STRAIN Calc			
Results Manager			

The fatigue simulation is done using FEMFAT channelMax. Variations are applied in the workflow by modifying the files.

Stored in a .ffj file

akidawa *X*

Read Results for Robustness Evaluation

Workflow is managed by optiSLang and the Extraction Toolkit

MAGNA

Results

Å MAGNA

Coefficients of Prognosis (using MOP) full model: CoP = 84 %

- Coefficient of Prognosis (CoP) and Metamodel of optimal Prognosis (MOP) for "Endurance Safety Factor": 84%
- CoP for maximum stress: only 62% (due to varying location?)

Å MAGNA

- Analysis of variation of von Mises stress due to geometric imperfection
- Left: Minimum value (safe), Right: Maximum value over all designs- unsafe

Å MAGNA

- Analysis of variation of von Mises stress due to geometric imperfection
- Expected statistical mean value (left) and standard deviation (right)

MAGNA

- Compute e.g. 99% quantile value, i.e. the v. Mises stress value which is exceeded by only 1% probability
- Detect "hot spots", i.e. 3 potential failure locations exceeding the critical

[©] Advanced Engineering / Disclosure or duplication without consent is prohibited

- Check explainability of FMOP (field meta model):
 - 90% on average (compared with 62% before)
 - 95% at hot spots

© Advanced Engineering / Disclosure or duplication without consent is prohibited

Sensitivity analysis

MAGNA

Which geometric shape is responsible for variations ?

ALGOAWA??

Conclusion

There are many applications for the use of random fields in engineering practise.

MAGNA

Optimisation of free form surfaces

4

2 Using statistics of measurements for geometry creation in simulations

3 Analysis of variations in production processes

Determination of the influence of different raw material suppliers

DRIVING EXCELLENCE. INSPIRING INNOVATION.