

presented at the 14th Weimar Optimization and Stochastic Days 2017 Source: www.dynardo.de/en/library

A joint company of Daimler and Bosch

Engineering up to the physical limits

Enabled by Multi-Target-Multi-Domain-Optimization

Marc Brück Weimar, June 2nd, 2017

Table of contents

- EM-motive GmbH
- Customer requirements / engineering constraints
- Component vs. systems engineering
- Workflow
 - Example 1: Noise due to electromagnetic forces
 - Example 2: Impact of scattering input parameters
 - Evaluation of performance "at a glance"
- New postprocessing features in optiSLang
- Summary

EM-motive GmbH – A joint company of Daimler & Bosch

- More than 300 000 e-motors manufactured since 2012
- Full-range portfolio for EVs, plugin-hybrids and hybrids
- Customer vehicles with EM-motive e-motor

Customer requirements / engineering constraints

Customer requirements touch different physical domains

- Cost
- Mounting space
- Cooling
- Inverter

EM-motive GmbH / DBEM/EEP4-Brück / slide 4

WOST 2017, June 1 – 2, 2017, congress centrum neue weimarhalle, Weimar

Component vs. (or better and?) systems engineering

- Components strongly interact
- Static boundary conditions not suitable for dynamic interactions
- Systems engineering necessary to handle the complexity

EM-motive GmbH / DBEM/EEP4-Brück / slide 5

Workflow for virtual product development

systems engineering

EM-motive GmbH / DBEM/EEP4-Brück / slide 6

WOST 2017, June 1 – 2, 2017, congress centrum neue weimarhalle, Weimar

Example 1: Noise due to electromagnetic forces

- Background
 - Forces and bending moments act on stator teeth
 - Dynamic deformation of stator and housing surface
 - Generation of pressure waves
 - \rightarrow Emission of noise
- Workflow for simulation
 - ANSYS Maxwell: Electromagnetic forces and moments
 - Mechanical:
 - Modal analysis
 - Harmonic response analysis
 - Acoustic analysis via ERP-level (Equivalent Radiated Power)
 - Postprocessing via Waterfall diagram

EM-motive GmbH / DBEM/EEP4-Brück / slide 7

WOST 2017, June 1 – 2, 2017, congress centrum neue weimarhalle, Weimar

Example 1: Noise due to electromagnetic forces

 $L_{ERP} = 10 \lg \frac{ERP}{P_0}$

- Results
 - Eigenmodes 0 and 3
 - Equivalent radiated power level L_{ERP} [dB]
 - ρ air density
 - c speed of sound
 - S surface area
 - v_n surface normal velocity
 - P₀ reference sound power
 - Postprocessing with waterfall diagram
 - L_{ERP} for various speed and frequencies
 - Idendification of operating points with high noise emissions for specific motor orders

EM-motive GmbH / DBEM/EEP4-Brück / slide 8

WOST 2017, June 1 – 2, 2017, congress centrum neue weimarhalle, Weimar

Example 2: Impact of scattering input parameters

- Background
 - Scattering of input parameters affects output responses
 - Probability density functions (pdf) often unkonwn
 - Low scattering in output responses required
- Workflow for simulation
 - optiSLang:
 - definition of input parameters and scattering
 - management of overall simulation procedure
 - Motor-CAD:
 - 2D-FEA of electromagnetics
 - characteristic curves

		A.
input	transfer function	→ output

Pa	arameter Start desig	ns Nominal desig	n Criteria Dy	namic sampl	ing Other	Result designs				
	Name	Parameter type	Reference value	Constant	Value type	Resolution	Range	Range plot	PDF	Туре
1	Stator_Bore	Opt.+Stoch.	220		REAL	Continuous				UNIFORM
2	Rotor_Diameter	Opt.+Stoch.	218		REAL	Continuous				UNIFORM
3	Active_Length	Opt.+Stoch.	80		REAL	Continuous			\frown	NORMAL
4	Magnet_Thickness	Opt.+Stoch.	4		REAL	Continuous			\frown	NORMAL
5	Magnet_Width	Opt.+Stoch.	25		REAL	Continuous			\frown	NORMAL
6	Slot_Depth	Opt.+Stoch.	21		REAL	Continuous				UNIFORM
7	Tooth_Width	Opt.+Stoch.	11.5		REAL	Continuous				UNIFORM
8	Stator_Lam_Dia	Opt.+Stoch.	280		REAL	Continuous			\frown	NORMAL
9	Shaft_Dia	Opt.+Stoch.	190		REAL	Continuous				UNIFORM

-0

EM-motive GmbH / DBEM/EEP4-Brück / slide 9

WOST 2017, June 1 – 2, 2017, congress centrum neue weimarhalle, Weimar

Example 2: Impact of scattering input parameters

- Results
 - Probability density function of characteristic curves due to scattering of input parameters

EM-motive GmbH / DBEM/EEP4-Brück / slide 10

WOST 2017, June 1 – 2, 2017, congress centrum neue weimarhalle, Weimar

Example 2: Impact of scattering input parameters

- Results
 - Probability density function of characteristic curves due to scattering of input parameters

EM-motive GmbH / DBEM/EEP4-Brück / slide 11

WOST 2017, June 1 – 2, 2017, congress centrum neue weimarhalle, Weimar

Workflow for virtual product development

- Postprocessing with evaluation of performance "at a glance"
- Requirements and performance indicators in different domains
 - Cost
 - Thermal
 - Mechanical
 - EMAG
 - Control
 - NVH
 - Environment
 - tbc
- Radar chart
 - Dimensionless representation
 - Requirements as 100 % reference (outside red circle = requirement fulfilled)
 - All information in one single chart
 - Easy comparison of several designs

EM-motive GmbH / DBEM/EEP4-Brück / slide 12

Signal plot with scattering (already available in optiSLang 6.1)

EM-motive GmbH / DBEM/EEP4-Brück / slide 13

WOST 2017, June 1 – 2, 2017, congress centrum neue weimarhalle, Weimar

Signal plot with scattering (already available in optiSLang 6.1)

EM-motive GmbH / DBEM/EEP4-Brück / slide 14

WOST 2017, June 1 – 2, 2017, congress centrum neue weimarhalle, Weimar

Signal plot with scattering (already available in optiSLang 6.1)

EM-motive GmbH / DBEM/EEP4-Brück / slide 15

WOST 2017, June 1 – 2, 2017, congress centrum neue weimarhalle, Weimar

Signal plot with scattering (already available in optiSLang 6.1)

EM-motive GmbH / DBEM/EEP4-Brück / slide 16

WOST 2017, June 1 – 2, 2017, congress centrum neue weimarhalle, Weimar

Radar chart (will be available in optiSLang 6.2)

EM-motive GmbH / DBEM/EEP4-Brück / slide 17

WOST 2017, June 1 – 2, 2017, congress centrum neue weimarhalle, Weimar

© EM-motive GmbH 2017 All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights

motive

Summary

- Requirements cover different physical domains and interact
- Systems engineering necessary to handle the complexity
- Workflow using Motor-CAD, ANSYS and optiSLang software presented
 - Example 1: Noise due to electromagnetic forces
 - Coupling of electromagnetics and structural mechanics
 - Harmonic response analysis with electromagnetic forces and bending moments as loads
 - Evaluation of noise via ERP-level and waterfall diagram
 - Example 2: Impact of scattering input parameters
 - Robustness analysis with optiSLang and Motor-CAD
 - Probability density functions for all input parameters
 - Characteristic curves with probability density distribution as output
 - Evaluation of failure cost
 - Postprocessing via Radar chart
- New postprocessing features implemented in optiSLang (signal plot with scattering & radar chart)

EM-motive GmbH / DBEM/EEP4-Brück / slide 18

WOST 2017, June 1 – 2, 2017, congress centrum neue weimarhalle, Weimar

Dr.-Ing. Marc Brück Senior Expert Simulation Technology

EM-motive GmbH / Postfach 30 02 40 / 70442 Stuttgart

Marc.Brueck@em-motive.com Phone: +49 711 811 40227

