Coupled simulation workflow for the design of optimized power electronic systems

Andreas Rosskopf

AGENDA

- 1. Initial situation
- 2. Design workflow for power electronic systems
- 3. Parameter variation
- 4. Practical applicability of the MoP
- 5. Genetic optimization
- 6. Conclusion

OVERVIEW INSTITUTE

INITIAL SITUATION

INITIAL SITUATION

WORKFLOW

Sketch of the computer aided design strategy:

Test application: Inductive connector – Power transfer: 1 kW

WORKFLOW

WORKFLOW - OVERVIEW

WORKFLOW – OPTISLANG REALISATION

Seite 9 von 21, WOST 2017 A. Rosskopf, 01./02. Juni 2017 © Fraunhofer IISB

WORKFLOW – PROTOTYPE DESIGN

Seite 10 von 21, WOST 2017 A. Rosskopf, 01./02. Juni 2017 © Fraunhofer IISB

PARAMETER VARIATION

Parameter variation and sensitivity analysis for varying geometry and circuit parameters:

PARAMETER VARIATION – BEST DESIGNS

Plot: (Geometry)Designs with the best circuit variation each, +Geometry of the prototype

PARAMETER VARIATION – ALL DESIGNS

Plot: All variations ca. 3500 - [filled]: best variations of one circuit design each, [shell]: "looser"

PARAMETER VARIATION – ANALYSIS

_	l_plug	N_p	N_s	d_o	d_ws	d_wp	OL L11	JTPUT : extra L22	ct_min_wind alles_W	Linear co ling_losses vs best_C_H	rrelation 6. OUTPUT : best_F	extract_loss_ bests_W	solid r=0.772 extracesis	2 extrasolid	extrasses	extrC_H	extrar_frq	extraarch	extrasses	k12
k12	-0.229	0.537	0.111	0.147	0.333	0.142	0.499	0.067	-0.021	0.068	-0.321	-0.093	0.05	0.075	-0.163	0.07	-0.153	-0.005	0.008	
exs	-0.056	-0.101	-0.264	-0.022	0.28	0.139	-0.109	-0.243	0.725	0.005	-0.089	0.405	-0.17	0.447	0.573	0.2	-0.102	-0.049	1	0.008
exh	0.024	-0.055	0.115	0.01	-0.065	0.026	-0.042	0.105	-0.144	0.084	0.114	-0.094	0.016	-0.182	-0.108	0.01	0.116	1	-0.049	-0.005
exrq	0.069	-0.49	0.512	-0.008	-0.317	0.181	-0.452	0.503	-0.462	0.745	0.766	-0.061	-0.378	-0.638	-0.319	-0.183	1	0.116	-0.102	-0.153
exH	-0.064	-0.181	0.118	0.014	-0.039	0.136	-0.182	0.096	0.294	0.174	0.17	-0.074	-0.075	0.236	0.32	1	-0.183	0.01	0.2	0.07
exs	-0.023	-0.06	-0.245	-0.066	0.189	-0.079	-0.081	-0.191	0.919	-0.113	-0.169	0.504	-0.211	0.772	1	0.32	-0.319	-0.108	0.573	-0.163
exid	0.014	0.275	-0.494	0.013	0.384	-0.045	0.242	-0.462	0.909	-0.426	-0.518	0.352	-0.077	1	0.772	0.236	-0.638	-0.182	0.447	0.075
/ exts	-0.029	0.177	-0.216	0.003	0.115	-0.048	0.171	-0.22	-0.166	-0.329	-0.278	-0.033	1	-0.077	-0.211	-0.075	-0.378	0.016	-0.17	0.05
peM	0.116	0.019	-0.127	-0.055	0.272	-0.049	0.035	-0.07	0.479	0.117	-0.161	1	-0.033	0.352	0.504	-0.074	-0.061	-0.094	0.405	-0.093
best_F	0.072	-0.68	0.377	0	-0.282	0.225	-0.639	0.374	-0.343	0.559	1	-0.161	-0.278	-0.518	-0.169	0.17	0.766	0.114	-0.089	-0.321
beF	0.055	-0.301	0.632	0	-0.281	0.145	-0.269	0.62	-0.25	1	0.559	0.117	-0.329	-0.426	-0.113	0.174	0.745	0.084	0.005	0.068
alN	-0.018	0.082	-0.411	-0.025	0.341	-0.01	0.056	-0.369	1	-0.25	-0.343	0.479	-0.166	0.909	0.919	0.294	-0.462	-0.144	0.725	-0.021
-122	0.228	0.111	0.987	0.016	-0.539	-0.205	0.153	1	-0.369	0.62	0.374	-0.07	-0.22	-0.462	-0.191	0.096	0.503	0.105	-0.243	0.067
EI-	0.085	0.987	0.153	0.058	0.027	-0.388	1	0.153	0.056	-0.269	-0.639	0.035	0.171	0.242	-0.081	-0.182	-0.452	-0.042	-0.109	0.499
d_ p	0.274	-0.37	-0.226	-0.051	0.211	1	-0.388	-0.205	-0.01	0.145	0.225	-0.049	-0.048	-0.045	-0.079	0.136	0.181	0.026	0.139	0.142
d_ws	0.197	0.043	-0.526	-0.032	1	0.211	0.027	-0.539	0.341	-0.281	-0.282	0.272	0.115	0.384	0.189	-0.039	-0.317	-0.065	0.28	0.333
°p-	0.032	-0.008	-0.026	1	-0.032	-0.051	0.058	0.016	-0.025	0	0	-0.055	0.003	0.013	-0.066	0.014	-0.008	0.01	-0.022	0.147
N S	0.179	0.115	1	-0.026	-0.526	-0.226	0.153	0.987	-0.411	0.632	0.377	-0.127	-0.216	-0.494	-0.245	0.118	0.512	0.115	-0.264	0.111
d N	0.031	1	0.115	-0.008	0.043	-0.37	0.987	0.111	0.082	-0.301	-0.68	0.019	0.177	0.275	-0.06	-0.181	-0.49	-0.055	-0.101	0.537
- pluç	1	0.031	0.179	0.032	0.197	0.274	0.085	0.228	-0.018	0.055	0.072	0.116	-0.029	0.014	-0.023	-0.064	0.069	0.024	-0.056	-0.229

Samples 3890/3890 (0/0 failed)

PARAMETER VARIATION – ANALYSIS

Seite 15 von 21, WOST 2017 A. Rosskopf, 01./02. Juni 2017 © Fraunhofer IISB

PARAMETER VARIATION – ANALYSIS

Evaluation of the process:

- Workflow runs (stable), efficient for adaption of the physical models, scriptings and implementation of pre-selection strategies
- Manipulation of the omdb files for extracting vectorised multi-layer data requires additional scripting
- A restart after stop is risky [V. 5.1.1]

Main problem, due to calculation time:

PARAMETER VARIATION – MOP

Generation of different MoP for a partial parameter space of the circuit simulation using more than 5k data samples [V5.1.1]:

Seite 17 von 21, WOST 2017 A. Rosskopf, 01./02. Juni 2017 © Fraunhofer IISB

PARAMETER VARIATION + PHYSICAL MODEL FOR CORE LOSSES

Physical Model A

Physical Model B

- Varying physical models, material data or cost functions can be tested for a large variety of virtual prototypes
- Relevant benchmark setups can be detected for building up experimental prototypes

PARAMETER VARIATION + GA

PARAMETER VARIATION + GA

Reduction of the volume / installation space by more than 20 % with the same amount of power losses

Seite 20 von 21, WOST 2017 A. Rosskopf, 01./02. Juni 2017 © Fraunhofer IISB

CONCLUSION

- The coupling of different physical domains and tools, is implemented in the current workflow and provides a significant enhancement compared to "multi-physics software"
- Multidimensional optimization enables a customer / user specific optimization of power electronic systems – providing a better interaction of all components of system within the defined working environment
- Partial tasks of the workflow can be re-started with new input data by re-using old data for the start and initialization. Significant reduction of time and invest by adapting parameters, boundary conditions or constraints.

