

Günter-Köhler-Institut für Fügetechnik und Werkstoffprüfung

Investigation of parameter influences on the laser processing of ceramics with ultra-short pulses

Maria Friedrich*, Sebastian Wächter*, Kristina Völlm,** Jens Bliedtner**

*ifw Günter-Köhler-Institut für Fügetechnik und Werkstoffprüfung, Jena

** Ernst-Abbe-Hochschule, Jena

ifu Jena

ynando | s

presented at the 14th Weimar Optimization and Stochastic Days 2017 Source: www.dynardo.de/en/library

Laser processing of glass and ceramics

Outline

1. USP laser ablation

Fundamentals

7. Juni 2017

tu Jena

Maria Friedrich 7. Juni 2017

1. USP laser ablation

Multitude of process parameters ...

... results in various surface qualities

Process Parameters

2. Experimental Approach

Multi-dimensional parameter space

- \rightarrow Sensitivity analysis, meta model, optimization
- ightarrow Identification of main parameters and non-linear effects

DoE

Latin Hypercube
 Sampling

Experiments

 USP ablation of alumina (Al₂O₃)

Excel

Analysis

 Sensitivity analysis based on MOP

ifu Jena

2. Experimental Approach

	Output Paramotors								
actuating variables		controlled v	ariables	Output Parameters					
Power P [W]:	0.3 20	Fluence F [J/cm²]:	0.1 32	Roughness Ra [μm]:	0.42 3.8				
Wavelength λ [nm]:	355; 532; 1064	Pulse distance a _P [μm]:	1 15	Ablation rate A [mm³/min]:	0 7.8				
Scanning speed v _s [mm/s]:	200 3000	Horizontal overlap O _h [%]:	-33 99	Ablation depth t [µm]:	0.24 543				
Line distance a _L [μm]:	1 15	Vertical overlap O_v [%]:	-33 99	Ablation/layer ApL [μm]:	0.018 31.5				
Focal length f [mm]:	40; 80; 100; 250	Focus diameter d _F [μm]:	12 100						
Number of layers	1 20								
ιγ]								
DoE	Ē			1					
Sensitivity Analysis									
ifu Jena		Maria Friedrich 7. Juni 2017			7				

2. Experimental Approach

Experimental Setup

Machinery: "microSTRUCT vario" (3D Micromac) Laser: "HYPER RAPID 25" (Lumera Laser) "Pharos" (Light Conversion)

- Wavelength:
- 1064 nm, 532 nm, 355 nm
- Pulse duration:
- Repetition rate: < 1
- Max. power:
- < 1 MHz 25 W

230 fs – 10 ps

Investigation of surface ablation:

Laser Scanning Microscope: (Keyence, VK-X100)

Depth: Roughness:

3. Sensitivity Analysis

CoP Matrix

- Manual filtering to avoid input correlations
- Main parameters: $P, a_L, a_P + d_F \rightarrow F, O_h, O_v$
- λ has no significance

Jena

 Number of layers N only important for depth t
 → process continues homogeneously into depth

Maria Friedrich

3. Sensitivity Analysis

Roughness

- Optimal pulse distance depends on fluence
- With increasing fluence, minimum shifts to smaller values

ifu Jena

Ra_{max} = 3,8 μm

3. Sensitivity Analysis

Ablation rate

- Ablation rate increases with power
- Line distance and pulse distance interact
 - \rightarrow High values: high speed
 - ightarrow Small values: high material removal

r_{min} ≈ 0 mm³/min

r_{max} = 7.8 mm³/min

ifu Jena

4. Current Activities

Problems with first attempt:

- Asymmetrical distribution of data points due to machine settings
- DoE based on actuating variables, but controlled parameters more significant

7. Juni 2017

4. Current Activities

Examination of various ceramic materials:

- Principle behavior stays the same
 → ablation depth increases nonlinearly with pulse overlap
- Exact values differ strongly

Al₂O₃ values calculated with Excel Add-In

optistang WOP solver version 6.0.1												
Meta model database was imported from:												
D:\Ablage\0_Untersuchungen\0_Versuchsplan\0_Auswertung\OptiSlang_Auswertung\!Mittelwerte_OptiS												
Extrapolate	0											
	F	Ρ	Uev	Ueh	aL	aP	AdUe	WL	dF	Full model		
ApL		45.44%			17.12%	29.57%			22.27%	79.41%		
A		62.25%			19.28%	13.20%			18.79%	86.85%		
t		38.90%			0.00%	24.46%	29.04%		19.80%	84.82%		
Ra		37.14%			9.14%	3.48%			33.87%	80.79%		

Maria Friedrich 7. Juni 2017

MOP solver

Summary

Avoidance of input correlations necessary

• USP laser processing of ceramics can be optimized with regard to quality (surface roughness) and quantity (ablation rate)

OUTLOOK

- Extension of investigations to further materials
- Optimization of industrial applications:
 3D structuring + functionalization

ifu Jena

Günter-Köhler-Institut für Fügetechnik und Werkstoffprüfung

M. Eng. Maria Friedrich

ifw - Günter-Köhler-Institut für Fügetechnik und Werkstoffprüfung GmbH Otto-Schott-Str. 13 07745 Jena

- +49 (0) 3641 204 190 Phone:
- E-Mail: mfriedrich@ifw-jena.de

www.ifw-jena.de

The project "ProFunK" has been supported by the free state of *Thuringia* (2015 VF0021). A cofinancing was carried out by the Europäischer Fonds für regionale Entwicklung (EFRE). This support is gratefully acknowledged.

Thüringer Aufbaubank

University of Applied Sciences

Ernst-Abbe-Hochschule Jena

HYBRID-TECHNIK

PORZELLANMANUFAKTUR

