Dr. Markus Israel - Volkswagen AG, Wolfsburg

presented at the 15th Weimar Optimization and Stochastic Days 2018 | Source: www.dynardo.de/en/library

1	Introduction
2	Process layout SPR
3	Metamodelling SPR
4	Metamodel-based process layout
5	Summary

1	Introduction	
2	Process layout SPR	
3	Metamodelling SPR	
4	Metamodel-based process layout	
5	Summary	

Introduction

The new VW Touareg: multi-material design

Ca. 2.500 Rivets in the car body structure

combinations of different aluminium alloys and aluminium to steel require mechanical joining technique

→ Self piercing riveting (SPR) is a suitable, high potential and qualified technology for multi-material car bodies

Introduction

Self piercing riveting – process and quality parameters

mechanical joining process with:

- high local deformation of the sheets including piercing of upper sheet
- Low deformation of the rivet to ensure spreading and generation of undercut

Cross section and quality parameters

Marke Volkswa

Process layout SPR

Relevant influencing parameters – rivet and die

die: different shapes

example: 3 die shapes and 2 rivet lengths (results from FEM simulation)

amount of combinations to be tested for finding the best parametrization

Process layout SPR

Two cases in process parametrization

Process layout SPR

Possibilities

÷	
b	
d	
Ċ.	
m	
11	
S	
0	
1	
∞	
1	
0	
\sim	
1	
0	
ā	
<u> </u>	
S	
~	
<u><u> </u></u>	
<u> </u>	
S	
-	
2	
2	
Ľ	
a,	
÷	
<u>_</u>	
Σ	
2	
0	
\geq	
~	
2	
2	
m	
~	
6	
0	
m	
10	
0	
4	
+	
0	
Ē	
· .	
-	
æ	
2	
S	
_	
÷	
2	
. •	
5	
ā	
Š	
ŝ	
-	
rfö	
erfa	
Verfa	
; Verfa	
8; Verfa	
18; Verfa	
018; Verfa	
2018; Verfa	
5.2018; Verfa	
06.2018; Verfa	
.06.2018; Verfa	
6.06.2018; Verfa	
06.06.2018; Verfa	
: 06.06.2018; Verfa	
d: 06.06.2018; Verfa	
nd: 06.06.2018; Verfa	
and: 06.06.2018; Verfa	
stand: 06.06.2018; Verfa	

	experimental	simulative	metamodel-based
picture	0,40 mm 0,34 mm 0,15 mm		0.7 0.6 0.6 0.3 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
	High	Medium	Low
effort	(joining, cutting, grinding, microscope)	(model qualification, simulation of each combination)	(with existing metamodel in real-time)
status	state of the art, most used	state of the art, rarely used	new

Using experimental or simulative data?

two main disadvantage of experimental data:

- not all parameter realisations are possible ightarrow bad DoE
- high effort of analysis for the neccessary amount of data

> metamodels based on simulation data including verification with experiments

•

Quality of choosen metamodels (CoP)

- using anisotropic kriging approximation
- very high prognosis quality
 → necessary for parametrization on metamodel

average CoP of all dies and combinations:

- undercut: 96,5%
- minimum remaining sheet thickness: 96,3%

scatter plot of undercut for die type 2 (alu/alu)

Quality of choosen metamodels (check of already known relations)

guality of metamodel for undercut: die side material is pierced . undercut (mm) 0.6 0.4 0.2 -0 1.25_{1.5}_{1.75 2} 2.25_{2.5}_{2.75} 5.5 5.5 rivet length (mm) Punch side material thickness (mm) 3 no undercut

metamodel of undercut for die type 2 (Alu/Alu)

correct tendencies no inexplicable waviness

huge area of zero-value ٠ is good approximated

Parameter relevance (example: die type 2, steel/aluminium)

Quality of choosen metamodels (validation with experiments)

- very good prognosis quality based on verification of 133 material and thickness combinations
- nearly idendical prognosis quality like FEM simulation

Metamodel-based process layout

Step 1: Metamodel response integrated in Excel

Input desk (material and thickness combination, rivet) thickness thickness rivet material material Rivet side die side length rivet side die side (mm) (mm)(mm)AA6016-1 1,5 HX340LAD 2 4,50 AA6016-1 1,5 HX340LAD 2 5,00 AA6016-1 HX340LAD 2 1,5 5,50 AA6016-1 1,5 AA6016-1 1,5 4,50 AA6016-1 1,5 AA6016-1 1,5 5,00 AA6016-1 1,5 AA6016-1 1,5 5,50

Result	s for differe	nt dies	Detailed Informations (example for die A)				
A	В	С	undercut (mm)	min. thickness (mm)	joining force (kN)		
			0,34	0,42	47,19		
<u> </u>			0,47	0,45	50,69		
<u> </u>			0,63	0,42	54,78		
			0,15	0,35	42,49		
			0,28	0,23	47,34		
			0,45	0,09	52,09		

- excel-integrated value response from different metamodels allows real-time evaluation of joinability for different material and thickness combinations of sheets (MTC), rivets and dies
 - finding optimal dies and rivets for a cluster of MTC is difficult

Metamodel-based process layout

Input desc											
		material	thic		ickness ma		aterial	terial		thickness	
		rivet side	rivet s	rivet side (m		die side		die side (mm)			
MTC 1		AA6016-3	3	1,1		AA6016-1			1,3		
MTC 2		AA6016-1	_	1,5	5	AA6016-1		1,5			
MTC 3		AA6016-3	3	2,0 AA6016-1			1,5				
MTC 4		AA6016-3	3	2,0)	AA	6016-1	1 1,3			.3
	Chose dies (fill with "X") Chose rivet length in mm (fill with "X")										
А	В	С	xxx		4	4,5	5	5,	5,5 6		6,5
х	х	x			x	х	х	x x >		х	x
Results											
Combination		Quality value				MTC 1	мт	MTC 2		тс з	MTC 4
of die and	rivet	worst MTC	2. worst MTC								
1		126 146		die	А	A			A	A	
1			140	rivet	4,5	4,	5	ļ	5,5	5,5	

die

rivet

die

rivet

die

rivet

А

4,5

В

4,5

В

4,5

А

6

В

6

В

6,5

А

6

В

6

В

6,5

А

4,5

В

4,5

В

4,5

Step 2: Optimated layout for a cluster of MTCs

Automated testing and optimization of suitable tools including minimization the number of dies and rivets

2

3

4

126

102

102

WOST 2018 - Weimarer Optimierungs- und Stochastiktage, Weimar, 21. Juni 2018 18

146

128

19 WOS	T 2018 – Weimarer Optimierungs- und Stochastiktage, Weimar, 21. Juni 2018	PM 6-00 Planung Marke Volkswagen
5	Summary	
4	Metamodel-based process layout	
3	Metamodelling SPR	
2	Process layout SPR	
1	Introduction	

Summary

- very powerful metamodels possible, based on a large database using high quality FEM model
- metamodels approximated with anisotropic kriging show best prognosis
- validation on experiments helps to improve prognosis quality (identical prognosis quality like direct FEM simulation)
- process layout for single MTC and for clusters of much MTCs is feasible in a very short time

Metamodel based process layout will be a powerful tool to shorten development time and to reduce facility costs.

Thank you for your attention

