

Statistics on Structures

An extension to optiSLang® for multidimensional data analysis

News & Developments

Sebastian Wolff. SoS Product Manager

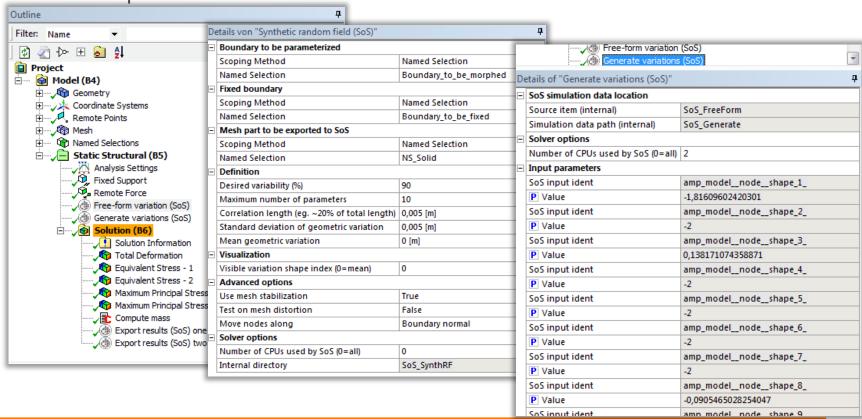
Summary

Current version: SoS 7

- New features
 - ANSYS Mechanical SoS plugin
 - Interactive 3D/ROM Viewer
 - Free-form shape optimization
 - Binary interface, ANSI C (FMOPSolver.DLL)
- Improvements
 - New FMOP Backend, improved SignalMOP
 - Mesh smoothening, free-form models, named selections
 - File formats
- In Development
 - SoS Script DLL

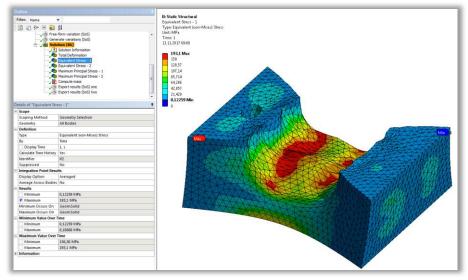
ANSYS Mechanical SoS Plugin

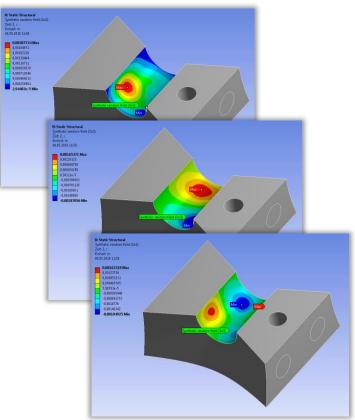
- Objectives:
 - Create random fields for geometric imperfections
 - Create free-form variation models for geometric imperfections
 - Import external random fields into ANSYS (e.g. obtained from measurements)
 - Expose random field parameters to ANSYS WB parameter set
 - Export result data to SoS
- Toolbar



ANSYS Mechanical SoS Plugin

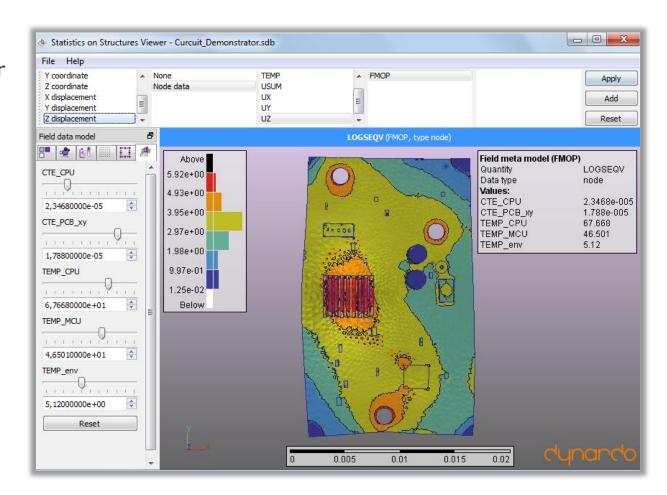
Create geometric variations directly in ANSYS Mechanical



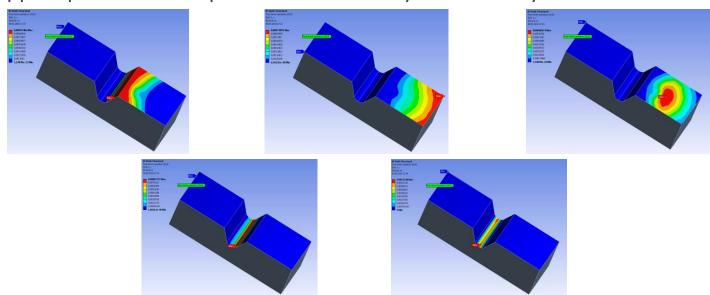


ANSYS Mechanical SoS Plugin

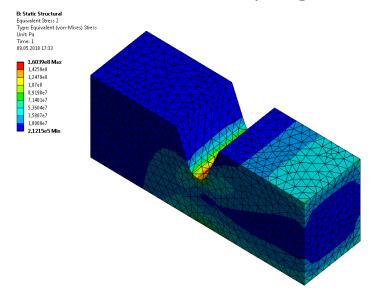
 Visualize scatter shapes, visualize applied variation as contour plot or deformation in ANSYS Mechanical

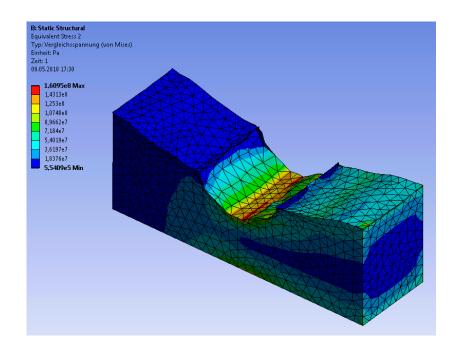


Interactive 3D/ROM Viewer


- Standalone
 SoS Viewer for
 FMOP, Random
 Fields and
 statistical
 analysis (read only mode)
- Interactive visualization: Use sliders to change parameters of FMOP and RF
- Visualize data as colored contour plots and deformed geometry

Free-form shape variations


- New random field model type: Free-Form variation models
- What is new?
 - Classical random fields: Global shapes ("sine"-"cosine"-alike)
 - Free-Form fields: Local shapes using support points
 - Support points can be placed automatically or manually or both



Free-form shape variations

Successful mesh morphing even for complex geometries...

FMOPSolver.DLL

- FMOPSolver.dll / .so for Windows + Linux
- ANSI C API for
 - Dynamic linking with C/C++ software
 - Bindings to Python
 - Bindings to Matlab
 - Etc.
- Allows approximation of
 - signals and
 - FEM solutions (node data / element data)
 through FMOP

ANSI C/C++

```
305
326
    DYNARDO FMOP API fmop error t FMOP getModelIdents
327
         ( const fmop db handle t database, fmop dataobjed
    DYNARDO FMOP API fmop error t FMOP getModelParamIdent
         ( const fmop handle t fmop, char *** const param
    DYNARDO FMOP API fmop error t FMOP getParamLowerBound
    DYNARDO FMOP API fmop error t FMOP getParamUpperBound
    DYNARDO FMOP API fmop error t FMOP getModelTotalAvgF(
    DYNARDO FMOP API fmop error t FMOP getModelAvgFCoP (
    DYNARDO FMOP API fmop error t FMOP getModelDim ( cons
    DYNARDO FMOP API fmop error t FMOP getDataPointIndize
    DYNARDO FMOP API fmop error t FMOP getDataPointCoors
500
502
503
509
    DYNARDO FMOP API fmop error t FMOP approxField
536
         ( const fmop handle t fmop, const double * param
537
```

```
param idents = ctypes.POINTER( ctypes.c_char_p )()
num idents = ctypes.c ulonglong(0)
sos.FMOP_getModelParamIdents ( fmop, ctypes.byref( param_idents ), ctypes.byref ( num_idents ) )

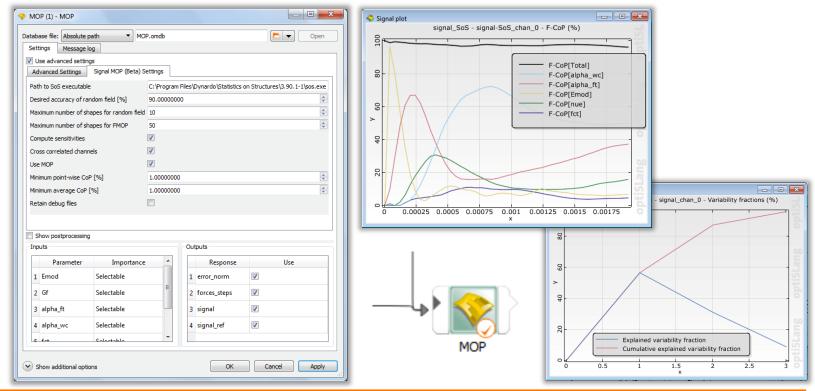
num mesh items = ctypes.c_ulonglong(0)
sos.FMOP_getModelDim ( fmop, ctypes.byref ( num_mesh_items ) )

param_values = ( ctypes.c_double * num_idents ) ( 1., 2., 3., 4., 5., 6. )
approx_field = ( ctypes.c_double * num_mesh_items.value ) ()
sos.FMOP_approxField ( fmop, param_values, ctypes.byref( approx_field ) )
```

Python example

In development: SoS script DLL

- Under development
 - Access all functions of SoS using the SoS script language
 - Start SoS scripts (internally as strings)
 - Access data through binary access
- ANSI C API (also usable for embedding into Python, Matlab etc.)


New FMOP backend

- New meta modelling technologies in SoS
- Currently used to compute sensitivity indices and prognosis quality
 - New: Also exact for arbitrary nonlinear models
- Beta option (SoS script or SignalMOP):
 - Also used for approximation
- FMOP can nearly reproduce same results as point-wise MOP!

New SignalMOP (Beta option in optiSLang 7.1)

- SignalMOP integrated into MOP and MOP-Solver nodes (using SoS 3.3.4 + 7)
- New post processing options: F-CoP, Scatter shapes, quantile values, variability fractions, linear correlations

Support for Named Selections / Components

- Components = Named Selections, Node sets, Element sets
- Used for:
 - Import data only for a subset of your FEM mesh
 - Define fixed supports when modifying geometries

File formats and Import mappers

- Photographic measurements:
 - Import images of different resolution (resample/scale or cut-off)
- ANSYS:
 - Import named selections from CDB
 - Export data to External Data CSV format (as input to Mechanical)
- Abaqus:
 - Extend FEM element library (new: quadratic volume elements)

Advanced SoS script API

- Powerful and fast SoS script API for automated processing
- See examples (C:\Users\Public\Documents\Dynardo\...)
- Used within projects e.g. to
 - Do simple fatigue analysis based on FMOP stress results (implementing rainfall counting)
 - Create a database for worn brake pad measurements
 - Perform time stepping based on nonlinear ROM (through FMOP)
 - Much more....

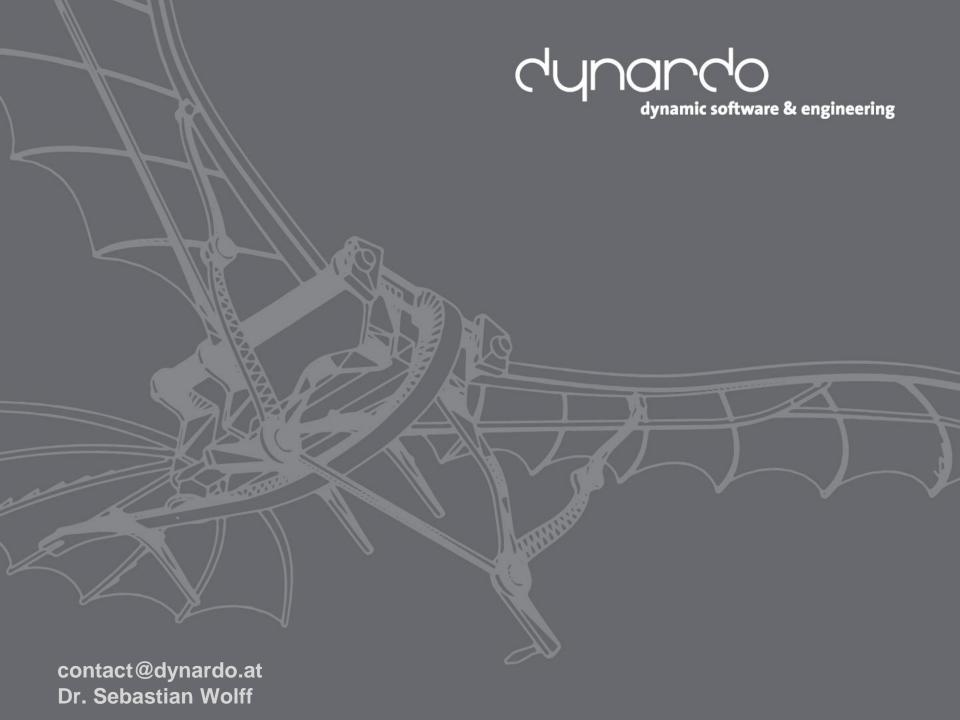
animate_3d_rendering.ssc

∰ cmd_arguments.ssc

@ error_handling.ssc

fast_execution.ssc

fem_mesh_connectivity.ssc


and the state of th

Iinear_algebra.ssc

🗾 module_tmath.pdf

remove_data_and_filters.ssc

Script examples in C:\Users\Public\Documents

