

 Cunce
 presented at the 15th Weimar Optimization and Stochastic Days 2018

 Source:
 www.dynardo.de/en/library

Simulation ist mehr als Software®

Identification of Relevant Parameters for Battery Model using Calibration Under Discharge Condition

Nico Nagl – CADFEM GmbH Lucas Kostetzer – CADFEM GmbH

Motivation

- Energy turnaround
 - E-mobility awareness increases
 - Alternative energy sources

 \rightarrow more and more energy storages are needed

- Weaknesses of energy storages
 - Thermal Runaway
 - Decreasing capacity
 - Small energy density
- →Understand charge and mass transport of batteries before production
- →Simulation of batteries beyond known limits

9. Oktober 2016, 18:57 Uhr Brennende Akkus

Schwelendes Verfahren

Das verschmorte Handy aus dem Flugzeug der Southwest Airlines. (Foto: Brian Green/Reuters)

Quelle: www.sueddeutsche.de

Simulation ist mehr als Software®

Battery Simulation

Simulation Task – Identification and Calibration

- Newman Model based (LIBERA) Project from CADFEM/THI)
 - Lithium-Ion Diffusion
 - Charge transport
 - Electrochemical reaction
- Pseudo 2D-Model:

Dimension x:

transport from negative to positive electrode

Dimension r: particles describing porosity of electrodes

Main Output signal: e. g. Voltage vs. charge

- Goal:
 - Identify driving parameters
 - Calibrate signals between simulation and test

Electrode Domain

C:\Windows\system32	2\cmd.exe		
BF_sum_c (p,n)	= -1.155403e-004 , 1.155353e-004	-	•
coef. loop= 6 time step RMS_change_phy_s RMS_change_chy_s RMS_change_cs RMS_phy_s RMS_phy_s RMS_phy_e RMS_c RMS_cs Imbalance_I Imbalance-I	= 1.000000e+000 = 2.641180e-006 = 1.587784e-006 = 8.499018e-005 = 4.430842e-005 = 2.421626e-009 = 4.003179e-013 = 1.850237e-005 = 1.521184e-027 = 2.521568e-010 = 4.764801e-003		
Imbalance_cs Imbalance_cs_loc BF_sum_curr (p,n) BF_sum_c (p,n) time step converg Voltage limit rea iteration = 1689 time = 3.065000e+ Drücken Sie eine	= 3.130614e-009 = 25 = -17.50 , 17.50 = -1.155382e-004 , 1.155355e-004 ed ched 3 003 beliebige Taste		

Parametric Workflow for Battery Simulation

- Battery simulation on electrode level
- Input parameters
 - Physical battery model parameters
 - Setup parameters
- Output parameters
 - Voltage vs. time
 - · Current vs. time
- Reference Signals
 - 1 C Rate Voltage vs. Charge
 - 2 C Rate Voltage vs. Charge
 - 4 C Rate Voltage vs. Charge

Electrode Domain

Parametric Workflow for Battery Simulation

Battery Parameters and Ranges for Sensitivity Analysis

- 13 Input Parameter
- Which parameters influence the discharge signal?
- \rightarrow Sensitivity analysis

Name	Description	Unit	Reference Value	Lower Bound	Upper Bound
D_e	electrolyte phase Li-ion diffusion coefficient	m²/s	7.50E-11	3.00E-11	1.20E-10
Ds_n	diffusion coefficient at the solid phase. negative electrode	m²/s	3.90E-14	1.56E-14	6.24E-14
Ds_p	diffusion coefficient at the solid phase. positive electrode	m²/s	1.00E-13	4.00E-14	1.60E-13
ep_n	volume fraction of electrolyte at the negative electrode	-	0.357	0.143	0.571
ep_p	volume fraction of electrolyte at the positive electrode	-	0.444	0.266	0.622
epf_n	volume fraction of filler material at the negative electrode	-	0.172	0.103	0.241
epf_p	volume fraction of filler material at the positive electrode	-	0.259	0.104	0.414
k_n_ref	electrochemical reaction rate constant of negative electrode	mol/m ² /s/(mol/m ³) ^{1.5}	2.33E-11	9.32E-12	3.37E-11
k_p_ref	electrochemical reaction rate constant of positive electrode	mol/m ² /s/(mol/m ³) ^{1.5}	2.33E-11	9.32E-12	3.73E-11
Rs_n	particle radius in negative electrode	m	1.25E-05	5.00E-06	2.00E-05
Rs_p	particle radius in positive electrode	m	8.00E-06	3.20E-06	1.28E-05
sigma_n	electrical conductivity of negative electrode	S/m	100	90	110
sigma_p	electrical conductivity of positive electrode	S/m	3.80	3.42	4.18

Simultaneous Simulation Workflow for all 3 C-Rates

• Sensitivity analysis with 200 designs

channel 0 of signal C4_SIM_Charge_Voltage

channel 0 of signal C4_SIM_Charge_Voltage

- Non-physical convergence problems \rightarrow unconverged solution
- New check output parameter: if converged then 0 otherwise -1

channel 0 of signal C4_SIM_Charge_Voltage

Unconverged Signals are neglected

channel 0 of signal C4_SIM_Charge_Voltage

- Limit of 2.75 V is not reached
- Additional check output parameter: if limit reached then 0 otherwise -1

channel 0 of signal C4_SIM_Charge_Voltage

- Limit of 2.75 V is not reached
- Signals are neglected

channel 0 of signal C4_SIM_Charge_Voltage

- All remaining signals
 - converged
 - reached 2.75 V
 - Both check output parameters = 0

BUT Signal lengths differ!

channel 0 of signal C4_SIM_Charge_Voltage

channel 0 of signal C4_SIM_Charge_Voltage

- All remaining signals
 - converged
 - reached 2.75 V

Extrapolation is NO option!

There is a solution for this problem!

Characterization of Calculated Signals

Characterization of Calculated Signals

- Transpose signal
- All signals have same length
- No extrapolation raw data from simulation
- Calibration possible

channel 0 of signal C4_SIM_Charge_Voltage_Transposed

Calibration – Minimize Difference between Reference and Simulation

$$RMSE = \sigma_{\epsilon} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i^* - y_i)^2}$$

- *n*: Number of data points
- y*: Reference value (measurement)
- y: Calculated value (battery simulation)

\rightarrow Optimization task: Minimizing the difference for all necessary data points

Identification of non-valid Designs

Parallel Coordinates Plot

• Designs for check output parameter 1 C rate = -1 are deselected

Identification of non-valid Designs

Parallel Coordinates Plot

• Designs for check output parameter 2 C rate = -1 are deselected

Identification of non-valid Designs

Parallel Coordinates Plot

• Designs for check output parameter 4 C rate = -1 are deselected

Identification of non-valid Designs

Parallel Coordinates Plot

• Designs for check output parameter for all C rates = -1 are deselected

Identification of non-valid Designs

Parallel Coordinates Plot

• Select designs with low difference values \rightarrow new lower and upper bounds

2nd Sensitivity with Reduced Parameter Bounds

- 1st sensitivity with 200 designs
 - Statistics
 - Unconverged solutions: 34
 - Limit of 2.75 V not reached: additional 128 designs
 - Non-valid designs: 162
 - Valid designs: 38
- 2nd sensitivity with 200 designs
 - Reduction of parameter bounds based on designs with low difference values
 - \rightarrow Identify parameters with high influence on the signal
 - Statistics
 - Unconverged solutions: 0
 - Limit of 2.75 V not reached: additional 69 designs
 - Non-valid designs: 69
 - Valid designs: 131

Influence of Input Parameters on Signal

• Linear correlation matrix

• Resolution of signal with 500 sampling points

Influence of Input Parameters on Signal

- COP Matrix
 - 11 important parameters
 - 2 unimportant parameters (D_e and sigma_p)

Calibration – Minimize Difference between Reference and Simulation

- Dividing signals in 2 parts
 - Differenced for part 1 and part 2 for all C rates
- Restrictions
 - All check output parameters >= 0
- Weighting factors: W_i
- Normalizing factors: N_i (max y-value minus min y-value)

- Objective function
 - min (W_1*C1_Difference_Part 1/N_1 + W_2*C1_Difference_Part 2/N_2 ...)

Optimization Results

Adaptive Response Surface Optimization

Optimization Results

• Transposed 1 C Rate

Optimization Results

Summary

- Parametric simultaneous simulation of battery discharge behavior for different C rates
- Signal lengths differ \rightarrow transposing signals

• Sensitivity reveals parameters influencing the signal characteristic

- Minimizing the difference between reference and simulation by optimization
- Determination of battery parameters

Deutschland

CADFEM GmbH Zentrale Grafing Marktplatz 2 85567 Grafing b. München T +49 (0) 8092 7005-0 info@cadfem.de **Geschäftsstelle Berlin** Breite Straße 2a 13187 Berlin T +49 (0) 30 4759666-0

Geschäftsstelle Chemnitz Schönherrstraße 8 / Eingang R 09127 Chemnitz T +49 (0) 371 334262-0 **Geschäftsstelle Dortmund** Hafenpromenade 1 44263 Dortmund T +49 (0) 231 99325550

Geschäftsstelle Frankfurt Im Kohlruß 5-7 65835 Liederbach am Taunus T +49 (0) 6196 76708-0 **Geschäftsstelle Hannover** Pelikanstraße 13 30177 Hannover T +49 (0) 511 390603-0

Geschäftsstelle Stuttgart Leinfelder Straße 60 70771 Leinfelden-Echterdingen T +49 (0) 711 990745-0

Österreich

CADFEM (Austria) GmbH Zentrale Wien Wagenseilgasse 14 1120 Wien T +43 (0) 1 5877073 info@cadfem.at **Geschäftsstelle Innsbruck** Grabenweg 3 (SOHO 2.0) 6020 Innsbruck T +43 (0) 512 319056

Schweiz

CADFEM (Suisse) AG Zentrale Aadorf

Wittenwilerstrasse 25 8355 Aadorf T +41 (0) 52 36801-01 info@cadfem.ch **Bureau Lausanne** Avenue de la Poste 3 1020 Renens T +41 (0) 21 61480-40