Reduced-Order-Models of electric motors for systems engineering including effects of variable magnet and winding temperatures

EM-motive GmbH, DBEM/EEP4, Marc Brück & Tobias Cors, 22 June 2018

ROMs of electric motors for systems engineering ...

Outline

- EM-motive GmbH
- System E-drive
- Functional Mockup Interface (FMI) Functional Mockup Unit (FMU)
- State of the art ROMs at a glance
- Impact of magnet and winding temperature
- FMU incorporating impact of magnet and winding temperature
- Providing the power of optiSLang to full capacity
- Summary

EM-motive GmbH

A joint company of Daimler and Bosch

Mercedes-Benz GLC350e

Porsche Panamera S Peugeot 508 Diesel Hybrid

Mercedes-Benz

Porsche Cavenne S

E-Hybrid

E300e, E350e

E-Hybrid

Mercedes-Benz GLE500e

Mercedes-Benz S500e, S300h, S400h

3

- Full-range portfolio for EVs, plugin hybrids and hybrids
- More than 430 000 e-motors manufactured since 2012

System E-drive

Component vs. (or better and?) systems engineering

Systems engineering necessary to handle the complexity with universal file format for model exchange

Functional Mockup Interface (FMI)

Functional Mockup Unit (FMU)

- Basic thoughts
 - systems engineering needs component submodels
 - tool-independent exchange of component models
 - co-simulation with different tools
 - IP protection and licensing
- FMU = component which implements FMI
 - zipped file (*.fmu)
 - description of interface data (XML file) н.
 - functionality (C-code or binary)
 - optional additional data (e.g. manual.pdf)
 - FMU-export by e.g.
 FMU-import by e.g.
 - Amesim

 - MATLAB/Simulink
 - Dymola
 - Easy5 (MSC Software)
 - MapleSim
 - **OpenModelica**
 - Silver
 - SimulationX

- - Adams
 - AVL CRUISE / CRUISE M / Model.CONNECT

 - MoBA Lab
 - **PvFMI**

 - TLK FMI Suite (LabView blocks)
- for details visit: www.fmi-standard.org/tools

source: www.fmi-standard.org

considerable FMI-support by nearly all standard systems engineering tools

State of the art

ROMs at a glance

	"Finite-Element-Analysis"	"Instantaneous Flux Model"	"Average Flux Model"	"Constant Inductance Model"
Modeling	Maxwell-equations	$\psi_d \ / \ \psi_q \ / \ M = f(I_d, \ I_q, \ \alpha_{mech})$	$\psi_d \ / \ \psi_q \ / \ M = f(I_d, \ I_q)$	$L_d / L_q = const., M = f(I_q)$
Representation		Werk W Kerkel	Appendix Jack Provide American Americ American American Ameri American American Amer	
Characteristics	detailed basis for ROMs, based on physics	nonlinear, no core & eddy losses	nonlinear, no core & eddy losses, no cogging torque & torque ripple, sinusoidal back-EMF	linear, no core & eddy losses, no cogging torque & torque ripple, sinusoidal back-EMF no saturation effects
Effort				

ROMs with different level of detail but for constant temperature are available. \rightarrow Need to account for temperature effects

Impact of permanent magnet (PM) and winding (W) temperature

Basic thoughts and consequences for handling

- Basic thoughts
 - T_{magnet}
 - Remanence Br → Flux linkages → Back EMF → Torque
 - B in lamination → Iron losses + Winding AC losses
 - Electr. resistivity magnet \rightarrow Magnet losses
 - T_{winding}
 - Electr. resistivity copper \rightarrow Phase resistance \rightarrow Winding DC losses
- Handling impact of

• T_{winding} analytically
$$P_{Cu, DC} = I^2 R(T) = I^2 \frac{L}{A} \rho_{el}(T_0) [1 + K(T - T_0)]$$

- T_{magnet} via 3D-lookup-tables
- Generation of 3D-lookup-tables
 - Electromagnetic FEAs with Motor-CAD on I_d/I_q-grid at constant speed
 - Grid generation and workflow management with optiSLang

Impact of magnet and winding temperature can be handled separately

FMU (average flux model) incorporating impact of magnet and winding temperature

Signal processing flow chart

Workflow for generation of FMUs is available

FMU (average flux model) incorporating impact of magnet and winding temperature

Workflow example: Export FMU from MATLAB/Simulink and import FMU in ANSYS Simplorer

2-click-solutions for FMU export and import are available

Providing the power of optiSLang to full capacity

3D-lookup-table vs. Metamodel of Optimal Prognosis (MOP)

- Actual implementation: 3D-lookup-tables in MATLAB/Simulink
 - # design points ~ discretization³
 - computational effort ~ # design points
 - easy interpolation
 - Interpolation and FMU-export in 3rd party software
- Future implementation: MOP with scattered design points in optiSLang
 - flexible positioning of design points
 - less design points necessary
 - refinement via Adaptive MOP (AMOP)
 - AMOP instead of interpolation
 - FMU-export in optiSLand
- Request for feature: Calculator to be included in FMU-export functionality

FMU-export from coupled module "MOP + Calculator"

10	n	EM-motive GmbH I DBEM/EEP4-Brück I WOST 2018, 21-22 June 2018, congress centrum neue weimarhalle, Weimar I 06/2	22/2018
		© EM-motive GmbH 2018: All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property right.	

Summary

 Were interval
 Were interval<

· Basic thoughts

- Tmagnet
 Remanence Br → Flux linkages → Back EMF → Torque
- B in lamination → Iron losses + Winding AC losses
 Electr. resistivity magnet → Magnet losses
- Electronication in agricer > magnet room

· Handling impact of

- Twinning analytically $P_{Cu,DC} = I^2 R(T) = I^2 \frac{L}{A} \rho_{el}(T_0) [1 + K(T T_0)]$ • Twagnet via 3D-lookup-tables
- Generation of 3D-lookup-tables
 Electromagnetic FEAs with Motor-CAD
- on Id/Iq-grid at constant speed
- Grid generation and workflow management with optiSLang

Actual implementation: 3D-lookup-tables in MATLAB/Simulink

design points ~ discretization³
 computational effort ~ # design points

- · easy interpolation
- · interpolation and FMU-export in 3rd party software

· Future implementation: MOP with scattered design points in optiSLang

- flexible positioning of design points
- less design points necessary
 refinement via Adaptive MOP (AMOP)
- AMOP instead of interpolation
- FMU-export in optiSLang
- Request for feature: Calculator to be included in FMU-export functionality

0 54

FMU

import

Testa

- Canadital Submittee

C File Life View Project Oraw

S Seglereri

- · systems engineering needs component submodels
- tool-independent exchange of component models
- IP protection and licensing
- · co-simulation with different tools
- FMU = component which implements FMI
 zipped file (*.fmu)
- · description of interface data (XML file)
- functionality (C-code or binary)
- optional additional data (e.g. manual.pdf)
- . FMU-export by e.g. FMU-import by e.g.

Special THANKS to Tobias Cors

11 EM-motive GmbH I DBEM/EEP4-Brück I WOST 2018, 21-22 June 2018, congress centrum neue weimarhalle, Weimar I 06/22/2018 © EM-motive GmbH 2018: All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property right.

Convent Temph Delv/Belle/Y Convent Eat Delv/Belle/X Refer Ref

- 23 0 0 0 23 0 - 23 - 0 0 22 - ---

export

Reduced-Order-Models of electric motors for systems engineering including effects of variable magnet and winding temperatures

EM-motive GmbH, DBEM/EEP4, Marc Brück & Tobias Cors, 22 June 2018

EM-motive GmbH Wir sind der Antrieb der E-Mobilität.

EM-motive GmbH

Dr.-Ing. Marc Brück Robert-Bosch-Straße 2 71701 Schwieberdingen

Marc.Brueck@em-motive.com

+49 711 811 40227

