

presented at the 15th Weimar Optimization and Stochastic Days 2018 | Source: www.dynardo.de/en/library

Motor Design Software by Motor Design Engineers

This document contains proprietary information of Motor Design Ltd.

Such proprietary information may not be used, reproduced, or disclosed to any other parties for any other purpose without the expressed written permission of Motor Design Ltd. © Motor Design Ltd 2016 All Rights Reserved.

Optimisation of Electric Machines using Motor-CAD and optiSLang

22 June, 2018

Introduction

- I. Motor-CAD & optiSLang
- II. Case study
- III. Problem setup
- IV. Results
- V. To go further...

Conclusion

Introduction

Electrical machine development workflow

Product development workflow

Motor-CAD & optiSlang

Electrical machine design with Motor-CAD and optiSLang

Motor-CAD software

Application specific tool for design and simulation of electric motors

- **EMag**: template driven 2D FEA combined with analytical equations for fast calculation of motors electromagnetic/electrical performance
- Therm: heat transfer and flow network circuits automatically set up to give quick steady-state & transient thermal predictions
- Lab: provides efficiency mapping, continuous & peak torque envelopes and duty cycle transient thermal analysis within seconds/minutes

Easy and fast model setup and calculation adapted to motor design concept studies and optimisation

Motor-CAD EMag

Many geometry options for housings, rotors, slots, windings...

Motor-CAD EMag

- Extensive range of parametrised templates geometries
- Additional flexible DXF or script based geometry definition
- Fastest FEA electromagnetic solver
- Smart loss calculation algorithms speed up solving
- Standard or custom winding designs

Motor-CAD Therm

- Thermal and flow network analysis of electric motors & generators
- Network set up automatically using proven mathematics for heat transfer and air/fluid flow
- Extensive range of cooling types
- 20 years of practical manufacturing experience built in to assist quantify manufacturing issues
- Able to run complex thermal transient duty cycle analysis

Motor-CAD Lab

- Fast and accurate calculation of the motor electromagnetic and thermal performance over the full torque/speed envelope
- Automated calculation for maximum torque/amp or maximum efficiency control
- Co-simulation between EMag and Therm gives a quick and accurate prediction of the continuous or peak torque envelope within the electrical and thermal limits of the machine

Motor-CAD and optiSlang

Two process integration using Activex connection and Python scripts

1. Custom integration: convenient solution, easy to use

2. Self-made script: more effort required, more flexibility

Case study

Cage induction motor: TESLA model 60S

Baseline: TESLA 60S

Copper rotor induction motor

Main dimensions	Value [mm]				
Stator diameter	254				
Housing diameter	282				
Stator bore	157				
Tooth width	4				
Slot depth	19				
Slot opening	2.9				
Bar depth	23.87				
Airgap	0.5				
Active length	152				
Machine length	280				

4 poles/60 slots/74 bars

Housing & Shaft cooling

TESLA 60S: winding

Parameter	Value			
Parallel paths	2			
Turns/coil	1 or 2			
Slot fill factor	0.37			
Coils/phase	12			

Estimated performance (Motor-CAD Lab)

Peak torque characteristic

Parameters

- Max. speed: 15krpm
- Max. current: 900Arms

• DC voltage: 366V

Estimated performance (Motor-CAD Lab)

Continuous torque

Parameters

• Max. rotor cage temperature: 220C

 Max. stator winding temperature: 180C

Scope of work

Maximize continuous performance

Questions

- How?
- Which drawbacks?
- Which solutions?

Problem setup

Motor-CAD Lab & optiSlang workflow

Motor-CAD

Fixed parameters

- Maximum envelope
 - Stator OD, max length
- Winding configuration
 - Turns/coil, slot fill factor...
- Slot/bar combination
- Cooling system, materials
- Drive settings
 - Maximum current
 - DC voltage
- Temperature limits
 - Rotor & Stator

Optimization directly applied to Motor-CAD system

Optimization based on sensitivity analysis and meta-models generations

Optimization directly on the Motor-CAD system

Optimization based on sensitivity analysis and meta-models generations 4

Variables and bounds

Parameter	Value
Slot depth/Stator thickness	[0.3; 0.6]
Stator ID/stator OD	[0.55; 0.75]
Stator tooth width/Slot pitch	[0.3; 0.6]
Rotor bar depth/Rotor thickness	[0.55; 0.75]
Active length	[90; 152] mm
Rotor tooth width	[2.5; 3.7] mm

Results

From the sensitivity analysis to the optimization

Sensitivity analysis

Advanced Latin Hypercule Sampling, 250 designs, all succeeded

🗱 Sensi_LAB - Sensitivity									— 🗆	\times			
Parameter Start designs Criteria Dynamic sampling Other				Result design:	5								
	Îd	Feasible	Duplicate	s Status	Bar_Depth_l	Ratio	Bar_DepthT_	Motor_Length	Rotor_Lam_Length	Rotor_Tooth_Width	Slot_Depth	Slot_Depth_Rat	io ^
1	0.1	true		Succeeded	0.2535		11.1638	262.02	134.02	3.1984	33.3775	0.5898	
2	0.2	true		Succeeded	0.2995		13.22	263.012	135.012	3.3808	29.2503	0.5178	
3	0.3	true		Succeeded	0.3615		17.7564	252.844	124.844	3.4096	22.4692	0.4362	
4	0.4	true		Succeeded	0.4155		18.8469	260.284	132.284	2.7712	21.058	0.381	
5	0.5	true		Succeeded	0.3025		14.5511	278.388	150.388	3.6352	22.8493	0.435	
249	0.249	true		Succeeded	0.4815		29.3744	272.932	144.932	3.5632	21.8487	0.5514	
250	0.250	true		Succeeded	0.4895		25.1378	245.404	117.404	3.6976	19.7203	0.4002	~
<										>			
Selection mode: Designs Columns Individual Cells Use as start design(s)									s) 🔻				
Show additional options OK Cancel Apply									pply				

Meta model of prognosis (MOP)

Meta-model for the torque at 8000rpm

Meta model of prognosis (MOP)

Slot depth ratio impact

Single-objective optimization: EA & NLPQL

• Similar designs obtained from EA and NLPQL optimizers

Single-objective optimization

Motor Design Limited

Trade-off between continuous & peak performance!

To go further...

From the sensitivity analysis to the optimization

Single-objective optimization: ARSM

Active length set to the maximum value (152mm)

New MOP (300 designs)

MOP for the continuous torque at 8000rpm

- Continuous torque limited by the stator
- Allocated space for copper and iron materials determines the density levels in the machine (current density, magnetic flux density)
- Temperature hotspot increases due to higher resulting losses

160

Linear Regression approximation of T8 therm

Coefficient of Prognosis = 99 %

Multi-objective optimization on the new MOP

- Maximisation of the continuous AND the peak torque at 8000rpm (EA)
- Pareto front shows trade-off between peak and continuous performance
- 3 designs selected
 ▶ Design 596
 - → ~ 163/406 N.m ≻Design 559
 - → ~ 169/401 N.m
 - ➢Design 386

→ ~ 172/395 N.m -

Single-objective optimization

Trade-off between continuous & peak performance!

Conclusion

Conclusion

Motor-CAD and optiSlang together

- Easy integration of Motor-CAD into optiSlang environment
- Optimization applied either on the best model resulting from a sensitivity analysis or directly on Motor-CAD.
- Possibility to optimize an electrical machine over its full speed range and within the thermal/electrical limits.

Case study: Tesla 60S

 Pareto front obtained from a multi-objective optimization showed that Tesla design presents a good compromise between continuous and peak performance.

Outlooks

- Different operating points from the torque speed curve may be considered
- Constraints on other performance (efficiency, power factor...) may be added.

Thank you for your attention Any questions?

Motor Design Software by Motor Design Engineers

Motor Design Ltd

5 Edison Court | Wrexham Technology Park | Wrexham | LL13 7YT | UK Tel. +44 (0)1691 623305