Cunce
 presented at the 15th Weimar Optimization and Stochastic Days 2018

 Source:
 www.dynardo.de/en/library

Performance Map Calculation of Current-Excited Synchronous Motors using optiSLang

WOST 2018

Daniel Bachinski Pinhal Dieter Gerling Universität der Bundeswehr München

EAA Elektrische Antriebstechnik und Aktorik Electrical Drives and Actuators

Project Framework and Motivation

Assessment of Performance for Variable Speed Electric Drives

- Definition of terms
- Torque speed curves and performance maps
- Recapitulation of torque-speed curve calculation
- Suggested Workflow in optiSLang
 - Optimization task and its implementation optiSLang
 - Best practice core concepts
 - Issues
- Summary

Project: "ProE-Traktion"

Elektrische Antriebstechnik und Aktorik Electrical Drives and Actuators

Chair: Prof. Dr.-Ing. Dieter Gerling

der Bundeswehr

Universitä

Definition of Terms

Chair: Prof. Dr.-Ing. Dieter Gerling

der Bundeswehr

Nünchen

Torque-Speed Curve and Performance Maps

- System view
 - Electric Machine: $T(I_e, I, \theta, f_{el})$
 - Power electronics
 - Control
- Torque-Speed-Curve
 - Limit of practically reachable points
 - Maximization of torque at every speed
 - Unique solution
- Performance Maps
 - Assessment of operation points
 - Non-uniqueness
 - Goal function to enforce unique solution
 - Minimization of chosen goal function

Recapitulation of Torque-Speed Curve Calculation

- FE-based calculation of envelope curves
 - Sampling of FE-Model
 - Spanning of response surfaces
- Optimization using MOPs
 - Two optimizers in series
- Careful selection of response quantities for MOP creation
 - Other results as derived quantities
 - $U_{d,q} = \Omega \cdot U_{d,q}^* + R_{AC}(P_{Cu}^{Stat}) \cdot I_{d,q}$
 - $U_{Max} \ge \sqrt{\frac{U_d^2 + U_q^2}{2}}$
- Export of text files from optiSLang scenery

Description: Mathematical Optimization Task

7

- Uniqueness through objective function
 - Maximum Torque per Ampere
 - Power Factor Maximization
 - Total Loss Minimization
- Definition of T-n-points
 - Check if point is reachable
- Optimization for each reachable point in grid

$$\begin{split} & \text{Min} \left[\mathrm{F}(I_e, I, \theta, f_{el}) \right] \\ & U_{\text{ph}} \leq U_{\text{max}} \\ & I \leq I_{\text{max}} \text{ ; } I_e \leq I_{e, \text{max}} \\ & n = n_0 \text{ ; } T = T_0 \end{split}$$

der Bundeswehr Universität 🎪 München

Description: Implementation in optiSLang

- Tolerance for Torque
 - Relative valued
 - Two distinct constraints
- Rectangular grid of T-n points
 - Check if point is reachable ("conditional execution")
- Three optimizers in series
 - 1. Without voltage constraint
 - 2. Coarse optimization
 - 3. Fine optimization

Name	Туре	Expression	Criterion	Limit
🐠 MTPA	Objective	I_Goal	MIN	
📥 Target_Torque	Constraint	-Delta	≤	Tolerance
📥 Max_Voltage	Constraint	U_Phase_RMS/Umax	≤	1
📥 Target_Torque2	Constraint	Delta	≤	Tolerance
左 Delta	Variable	(T_Target-Torque_edit)/T_Target		
🎾 Tolerance	Variable	0.01		

EAA Elektrische Antriebstechnik und Aktorik Electrical Drives and Actuators

8

Description: Data Handling and Post-Processing

- Post-Processing in Matlab
 - Physics based extrapolation (T = 0, n = 0)
 - Contour plot
 - Plot of envelope curves

EAA Elektrische Antriebstechnik und Aktorik Electrical Drives and Actuators

der Bundeswehr Universität 🔬 München

Core concepts

- Sampling of FEM-Model of Motor
 - Accounts for effects modeled in FEA
 - Separate optiSLang project
- High CoP values
 - Careful selection/normalization of responses
 - Decomposition of results into multiple terms (e.g. core losses, voltage)
 - Accurate model of simple response over uncertain model of complex response
- Definition of equality constraint using tolerance
- Series of Optimizers
 - Varying Accuracy
 - Constraints

EAA Elektrische Antriebstechnik und Aktorik Electrical Drives and Actuators

der Bundeswehr Universität 🔬 München

Chair: Prof. Dr.-Ing. Dieter Gerling

10

Models

Results for Different Control Strategies

- Maps with different criteria computed using same MOP
 - No additional FEA
- Total loss minimization (left):

$$F = \sum$$
 Losses

- <u>Maximum Torque Per Ampere (right)</u>: F = I
 - Rotor losses dominant in low torque region

Results for Different Control Strategies

- Maps with different criteria computed using same MOP
 - No additional FEA
- Total loss minimization (left):

$$F = \sum$$
 Losses

- <u>Maximum Torque Per Ampere (right)</u>: F = I
 - Rotor current maximized in base speed region

Issues: Run-time Performance

Database

- Storage of all iterations in all optimizers
- Project speed issue
- Option to store only best design missing

Extracting project	?	\times
Extracting data/database		
3.28 GB of 9.39 GB about 30 second(s) remaining	34% Cancel	

EAA Elektrische Antriebstechnik und Aktorik Electrical Drives and Actuators

Issues: Post-Processing of Optimization

Issues: Post-Processing of Optimization

- Solution using "data mining" node
 - Last design of NLPQL optimizer forwarded
- Erroneous convergence behavior for some T-n points
 - Currently: Manual correction of text files

Universität

der Bundeswehr

München

AA Elektrische Antriebstechnik und Aktorik Electrical Drives and Actuators

Summary

Electrical Drives and Actuators Chair: Prof. Dr.-Ing. Dieter Gerling Universität