WOST2018

presented at the 15th Weimar Optimization and Stochastic Days 2018 | Source: www.dynardo.de/en/library

COST & FUNCTION OPTIMIZATION

Alexander Fuchs – PS-TC/ENS2 & PS/PCB21 Prof.Dr.-Ing. Frank Mantwill – HSU Hamburg

BOSCH

Agenda

- 1. Dilemma of the Product Development
- 2. Innovation Hypothesis
- 3. Linear Force Solenoid for Automated Transmissions
- 4. Requirements to Set Up a Cost and Function Optimization
- 5. Workflow
- 6. Topology Variation Details and First Evaluation
- 7. Tolerance Variation Details and First Evaluation
- 8. Conclusion

Cost & Function Optimization Dilemma of the Product Development

Powertrain Solutions | PS-TC/ENS and PS/PCB21 - Fuchs | 2018-06-22

© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

3

Cost and Function Optimization Innovation Hypothesis

State of the Art – Functional Optimization

Workflow

Cost & Functional Optimization Cost function extends parameter search room costs KP12

* KPI: key performance indicator

Enhance function optimization with cost optimization to develop in shorter time competitive products.

Powertrain Solutions | PS-TC/ENS and PS/PCB21 - Fuchs | 2018-06-22

Cost and Function Optimization Linear Force Solenoid (LFS) for Automated Transmissions

Product Description

LFS for transmissions with direct shift control

Customer Benefits

- ► High accuracy, low hysteresis
- Curve of magnetic force adaptable
- Variability of the connectors

Specification

- Current range: 1.2 A
- Range of resistance: $1.5 6.3 \Omega$
- Diameter: 28.4 and 32.5 mm
- Lenght: 33 and 40 mm
- Stroke range: 2.2 3.5 mm
- Force Level: up to 25 N

Powertrain Solutions | PS-TC/ENS and PS/PCB21 - Fuchs | 2018-06-22

Cost and Function Optimization Requirements to Set Up a Cost and Function Optimization

Cost and Function Optimization Workflow

BOSCH

(H)

Powertrain Solutions | PS-TC/ENS and PS/PCB21 - Fuchs | 2018-06-22

© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Cost and Function Optimization Workflow realized in optiSLang

Realized workflow of the cost and function optimization includes

- Sensitivity analyse (4000 designs)
- Metamodel of optimal prognosis
- Evolutionary algorithm
- Integrated robust design analysis
- Duration of simulation ~38 h
- ► 99 variables
- ► 3 objectives and 9 constraints

Cost and Function Optimization Topology Variation - Workflow

O Powertrain Solutions | PS-TC/ENS and PS/PCB21 - Fuchs | 2018-06-22

© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

HELMUT SCHMIDT UNIVERSITAT

Cost and Function Optimization Topology Variation – First Evaluation

Form Deviation over MAT

Characteristic Curve

10 Powertrain Solutions | PS-TC/ENS and PS/PCB21 - Fuchs | 2018-06-22

Cost and Function Optimization Tolerance Optimization – Details

MAT – Calculation

- 1. Create new designs with different dimensions and tolerance classes
- 2. Automatic manufacturing steps selection based on given dimension and tolerance class

Robustness Analysis

3. Automatic adjustment of individual dimension range based on given tolerance class

4. Run robust design analysis for each design

Component Cost

5. Calculate new component costs based on scrap cost and MAT cost

Powertrain Solutions | PS-TC/ENS and PS/PCB21 - Fuchs | 2018-06-22

Cost and Function Optimization Tolerance Optimization – First Evaluation

Influences on Costs of different Tolerances up to 12 %

1 9 Powertrain Solutions | PS-TC/ENS and PS/PCB21 - Fuchs | 2018-06-22

Cost and Function Optimization Conclusion

- Procedure indicates optimal designs regarding function and cost
 - ► Which fulfil requirements
 - ► Save money
- Relationships between function, design features and costs are transparent
- Useful in concept phase to compare different designs
- ► Individual adaptable
 - Manufacturing processes
 - Products (proportional magnet, e-machine,...)

THANK YOU

