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In computer science, artificial
intelligence (AI), sometimes called
machine intelligence, is intelligence
demonstrated by machines, in
contrast to the natural intelligence
displayed by humans and animals.
Colloquially, the term "artificial
intelligence" is used to describe
machines that mimic "cognitive"
functions that humans associate
with other human minds, such as
"learning" and "problem solving"

Self-Driving
Russell & Norvig (2009). Artificial Intelligence: Seatch Recognition Cars

A Modern Approach. Prentice Hall

N Speech Language
o Pattern recognition Recognition Translation

e Nature Inspired Optimization
e Machine learning
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Response Surface Method

e Approximation of response variables as
explicit function of all input variables

e Approximation function can be used for
sensitivity analysis

e Global methods (Polynomial
regression, Neural Networks, ...)

e Local methods (Spline interpolation,
Moving Least Squares, Radial Basis
Functions, Kriging, ...)

e Approximation quality decreases
with increasing input dimension!

e Successful application requires
objective measures of the
prognosis quality!
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Metamodel of Optimal Prognosis (MOP)

e Objective measure of prognosis quality

e Determination of relevant parameter subspace
e Determination of optimal approximation model
e Approximation of solver output by fast

MLS approximation of difference

surrogate model without over-fitting Coefficient of Prognosis = 89 %
e Evaluation of variable sensitivities
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Coefficient of Prognosis (CoP)

e The CoP measures how good 1.00

the regression generalizes S 0.90 -

for unknown data points =

- 0.80

e Fraction of explained variation ¢ 0.70

of the prediction of a response 3 ™

SsPrediction (—g_ 0.60 CoD
C _ E x B : -
oP =1 — W 0.50 adjCoD —e—
SST 0.40 I I I I CoP |
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Number of samples

e CoP increases with increasing number of samples
» It assesses the approximation quality much more reliable than the CoD
e CoP is model-independent and suitable for other meta-models

e Estimation of CoP by additional (new) data set causes additional effort
» Cross validation using a partitioning of the available samples is applied
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Artificial Neural Networks
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Artificial Neurons - Activation Functions

dendrites

Sigmoid
1
14e—"

axon tan h 1 (
terminals
tanh(x) ﬂ g
=

RelLU
max (0, x)

o(x) =

10

e Neurons operate linearly or nonlinearly on weighted sum of inputs
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Input Layer Sigmoid Layer Linear Layer
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Model accuracy
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e OQutput and hidden layer consist of | — validation
linear or nonlinear neurons |

e Feedforward network with only linear
neurons is a linear regression!

e Training by minimizing the sum of
squared errors in a training data set
e Early stopping to avoid overfitting
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e Mainly used in image/pattern recognition

e Can be applied for each discrete output

e Each output state is one output neuron

e Output classification privides probability!

» Can handle nominal discrete inputs & outputs



© Dynardo GmbH duncr\do

NNFit approximation of y_sinus

Feedforward Network o g ——Coefflent o Prognosis 226 %
as Regression Model

0.5

e Network output is a global
approximation function
similar to polynomials

> Very fast output approximation
(after model was trained)

y_sinus
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2 neurons . .
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NNFit approximation of y_sinus

Coefficient of Prognosis = 100 %

-0.5

e Higher flexibility with larger -
number of neurons and layers
> Risk of overfitting increases

0.5

y_sinus

» Best compromise between
available data and model
complexity is needed

-0.5

4 neurons
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Feedforward Network as Regression Model

e Interactions can be represented better with more hidden layers
» Deep network architecture may improve regression

1 hidden layer

4 neurons
2

2 hidden layer
4 neurons *,

Artificial Intelligence and Machine Learning
Application in Computer Aided Engineering
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Network Architectures

A mostly complete chart of

© Backfed Input Cell N e u ra '. N etWO rks Deep Feed Forward (DFF)

® Input Cell ©2016 Fjodor van Veen - asimovinstitute.org
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Deep Learning A Deep
. . Learning
Machine Learning
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Keras & Tensorflow Libraries

Inputlayer

Hidden layer 1 Hidden layer 2

Outputlayer

Deep Learning

KE

b

TensorfFlow

Implementation in custom surrogate interface of optiSLang:

v

AN N N

Automatic configuration of neurons and layers

Cross validation to estimate Coefficient of Prognosis

Available as external python environment

Neural networks are treated as one of a library of approximation models
Competition is done in the MOP framework based on the CoP

Artificial Intelligence and Machine Learning
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MOP with Custom Surrogates
Python Interface with defined API

Initialization of model and data
Automatic build of the surrogate model
Considering MOP subspaces (optional)
Return cross validation estimate
Approximation call

Advanced Settings MMFit Settings Istsgs Settings

Custom Meurons per hidden layer

settings: Number of hidden layers

L

Print additional debug information

Print detailed time information

i

Random steps

Show progress bar

Use cross validation models for approximation
Use optiSLang MOP filtering

HDHHHDDHH

Use parameter optimization

Settings Message log
Use advanced settings

Advanced Settings MMFit Settings Istsgs Settings

Property Value
> CoP tolerance
> Transformation
v Models
~ Polynomials
Use True
Order 2
Coefficient factor 2.00
~ Moving least squares
Use True
Order 2
Coefficient factor 8.00
~ Kriging
Use True
Anisotropic [ ] False
Coefficient factor 8.00
v External
ASCMO [ False
True
Istsqs [ ] False
Signal MOP [ ] False

Artificial Intelligence and Machine Learning
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Deep Gaussian Covariance Network (DGCN)

Gaussian Process (Kriging) + ANN

Hidden layer 1 Hidden layer 2

1 1 ] ] 1 1 |

| Supports e . _
Prediction
Error bounds —— Inputlayer
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1.0 15 20 25 30 35 40 45 50
« Kriging basis functions

« Local covariance matrix approximated with neural network
> More flexibility to represent local effects

« Kevin Cremanns & Dirk Roos, PI Probaligence GmbH
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Examples

¢
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nl INPUT : X5
0 % ( Main effect: 0 %, Interactions: 0 % )

| INPUT : X4

% 1 % ( Main effect: 0 %, Interactions: 1 % )
€

e

Cn - INPUT : X1

— 17 % ain effect: 1 %, Interactions: 16 % )
2

Z

INPUT : X2

2

28 % ( Main effect

INPUT : X3
69 % ( Main effect: 65 %, Interactions: 4 %

0 10 20 30 40 50 60
CoP [%] of OUTPUT : Y

Training

1 15 %, Interactions: 13 % )

5 inputs,
| 3 important

NN (Keras) 2

CoP Training

100 2 sec 99.99 % 4.5 min
500 3 min 99.99 % 8 min
2000 330 min 99.99 % 14 min

10000 ?

68 min
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Turbine Data
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« Mass, stiffness, pressure loss and life time are given with respect to
geometry parameters

« 13 parameters are considered, 176 data sets were available

Artificial Intelligence and Machine Learning

Application in Computer Aided Engineering




© Dynardo GmbH Clbln(]r\do

o INPUT : THI1_Mount_Sectors |
0 %
) INPUT : THI6_Flanges
5 1%
]
Es INPUT : THI3_RegSectors 1
5 2 %
a
'ém .INPUT Bearing_ Flange Radial_Position il
=

2

Turbine Data — Rotational Stiffness

Anisotropic Krffgmg approximation of stlffness_rot
cient of Prognosis = 99 %

Coefficients of Prognosis (using MOP)
full model: CoP = 99 %

[—

[997] 1047 ss2UHNIS

INPUT : HUB_CONE_ANGLE |
31 %

INPUT : BEARING_SHAFT_ANGLE
82 %

20 40 60 80
CoP [%] of QUTPUT : stiffness_rot

o

J

« Anisotropic kriging (Gaussian process) is optimal approximation model type
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Turbine Data — Rotational Stiffness

NNFit aPproximation of stiffness_rot
icient of Prognosis = 79 %

13 parameters (full space) Coef

3 layer/ 7 neurons
CoD =98 %

CoP =79 %
. . . 2.25
» Significant larger error in
validation data indicates
overfitting 9 1.751
Model accuracy f:,
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Turbine Data — Rotational Stiffness

NNFit aPproximation of stiffness_rot
icient of Prognosis = 99 %

Coef
6 parameters (optimal subspace) >

3 layer/ 7 neurons

CoD =99 %
CoP = 98 %
» Reduction of parameter number #3 1
significantly improves accuracy
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QUTPUT : co
0.97 0.975

0.965

Turbine Data — Rotational Stiffness

Influence of number of neurons and layers

» Two or more layers show similar behavior
» 5 to 7 neurons are most efficient
> Adjustment of optimal network architecture is problem/data dependent
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Turbine Data — Rotational Stiffness

Influence of learning rate and decay

> Almost no influence
» Problem independent set up
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Turbine Data - Axial Stiffness

Krig i ng Anisotropic Kri#ing approximation of stiffness_axial NNFit a#proximation of stiffness_axial AN N

Coefficient of Prognosis = 91 % Coefficient of Prognosis = 88 %
7 parameters 7 parameters
CoD =99 %

er/ 5 neurons
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Turbine Data — Axial Stiffness

Influence of number of neurons and layers

> Influence of layer number is smaller
> 4 to 8 neurons are most efficient
» Learning rate and decay is minor important
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Load Bearing Capacity

e 6000 designs

e O input parameters with linear
and nonlinear dependencies
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e Neural network with 3 hidden layers and 10 neurons
can represent all responses very well

Polynomials Neural Network

255%i
23.5 %i
227%'

177
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24.3 %i
27.8 %i
28.0 %i
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Load Bearing Capacity

3000 - 3000 1
2500 -
2000 - 2000 -
1500 -
1000 1000
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-0
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3500
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Predicted values
0 500 1000 1500 2000 2500 3000

Predicted values
1500

Polynomial ANN
CoD =81 % CoD = 99,7 %
COP = 81 0/0 COP = 99’5 0/0 0 500 000 500 2000 2500 3000

— "o 500 1000 1500 2000 2500 3000 -_— Data values
— Data values —

500

500
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Time Series Prediction
ﬂ\\
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Recurrent Neural Network

Simple RNN:

®

L.—T__l ? (? ? ? Loops to keep information
C.:B = é—' :5 —'; '; from the outputs

Mormalization comparison Antenne 320/80

LSTM (Long Short Term Memory):
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= _ 0.2 1 = input[0,1]

| | — input output [3,1]

z — input output [-0.5,0.5]
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Signal Approximation with Recurrent Networks

Example Lotka-Volterra

10 signals Lotka Design Space 2

30 .
25 R
Num_input: 4
20 4
Num_points: 201
Type_layer: LSTM %] 'l"
Hiden_layers: [4, 5, 6] 10 - | ‘

Nb_units: [20, 40, 60]
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Signal Approximation with Recurrent Networks

Example Lotka-Volterra

/\/ Reference /\/ NN prediction

NN AN

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
T T T T T T T T T T T T T T T
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
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Summary
e Deep learning library is available as additional
external surrogate model in the MOP framework

e Significant speed up for large data sets compared to local models,

but more flexibility and higher accuracy than polynomials

e MOP parameter reduction and optimal network design
is the key for success with small data sets

For more information, please visit the Dynardo booth:

Deep Learning libraries - Lars Graning, Jonas Rotermund
Custom surrogate interface - Katrin Kidhn

MOP framework - Ulrike Adam, Thomas Most
MOP/AMOP Post Processing - Torsten Deckner, Ulrike Adam
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