Artificial Intelligence and Machine Learning – Application in Computer Aided Engineering

Thomas Most Jonas Rotermund Johannes Will Lars Gräning

Dynardo GmbH

16. Weimarer Optimierungs & Stochastiktage 2019, 06.-07. Juni 2019, Weimar

0

dynando

Artificial Intelligence

In computer science, artificial intelligence (AI), sometimes called machine intelligence, is intelligence demonstrated by machines, in contrast to the natural intelligence displayed by humans and animals. Colloquially, the term "artificial intelligence" is used to describe machines that mimic "cognitive" functions that humans associate with other human minds, such as "learning" and "problem solving"

Russell & Norvig (2009). Artificial Intelligence: A Modern Approach. Prentice Hall

- Pattern recognition
- Nature Inspired Optimization
- Machine learning

dynando

Machine Learning

Response Surface Method

- Approximation of response variables as explicit function of all input variables
- Approximation function can be used for sensitivity analysis
- Global methods (Polynomial regression, Neural Networks, ...)
- Local methods (Spline interpolation, Moving Least Squares, Radial Basis Functions, Kriging, ...)
- Approximation quality decreases with increasing input dimension!
- Successful application requires objective measures of the prognosis quality!

dynando

Metamodel of Optimal Prognosis (MOP)

- Objective measure of prognosis quality
- Determination of relevant parameter subspace
- Determination of optimal approximation model
- Approximation of solver output by fast surrogate model **without over-fitting**

Coefficient of Prognosis (CoP)

- CoP increases with increasing number of samples
- It assesses the approximation quality much more reliable than the CoD
- CoP is model-independent and suitable for other meta-models
- Estimation of CoP by additional (new) data set causes additional effort
- Cross validation using a partitioning of the available samples is applied

Artificial Neural Networks

Artificial Neurons – Activation Functions

Neurons operate linearly or nonlinearly on weighted sum of inputs

- Output and hidden layer consist of linear or nonlinear neurons
- Feedforward network with only linear neurons is a linear regression!
- Training by minimizing the sum of squared errors in a training data set
- Early stopping to avoid overfitting

Feedforward Network as Classifier

- Mainly used in image/pattern recognition
- Can be applied for each discrete output
- Each output state is one output neuron
- Output classification privides probability!
- Can handle nominal discrete inputs & outputs

Feedforward Network as Regression Model

- Network output is a global approximation function similar to polynomials
- Very fast output approximation (after model was trained)
- Higher flexibility with larger number of neurons and layers
- Risk of overfitting increases
- Best compromise between available data and model complexity is needed

Feedforward Network as Regression Model

- Interactions can be represented better with more hidden layers
- Deep network architecture may improve regression

dynando

Network Architectures

Keras & Tensorflow Libraries

Implementation in custom surrogate interface of optiSLang:

- ✓ Automatic configuration of neurons and layers
- Cross validation to estimate Coefficient of Prognosis
- ✓ Available as **external python** environment
- ✓ Neural networks are treated as one of a library of approximation models
- ✓ Competition is done in the MOP framework based on the CoP

MOP with Custom Surrogates

Python Interface with defined API

- Initialization of model and data
- Automatic build of the surrogate model
- Considering MOP subspaces (optional)

need Cattings

- Return cross validation estimate
- Approximation call
- Custom settings:

Advanced Settings	NNFIL Settings	istsqs Settings
Neurons per hidden la	yer	30
Number of hidden laye	ers	2
Print additional debug	information	
Print detailed time info	ormation	
Random steps		50
Show progress bar		\checkmark
Use cross validation m	odels for approxima	ation 🗸
Use optiSLang MOP fil	tering	
Use parameter optimiz	zation	\checkmark

MMEit Cottings

Interne Catti

Settings	Message log					
✓ Use advanced settings						
Advanced	Settings	NNFit Setting	s Istsqs Settings			
Property		Value				
> CoP tolerance						
> Transformation						
✓ Models						
 Polynomials 						
	Use		✓ True			
	Order		2			
	Coefficie	ent factor	2.00			
 Moving least squares 						
	Use		✓ True			
	Order		2			
	Coefficient factor 8.00		8.00			
✓ Kriging						
	Use		✓ True			
	Anisotropic		False			
	Coefficie	ent factor	8.00			
✓ External						
	ASCMO		False			
	NNFit		✓ True			
	Istsqs		False			
	Signal N	IOP	False			

Deep Gaussian Covariance Network (DGCN)

Gaussian Process (Kriging) + ANN

- Kriging basis functions
- Local covariance matrix approximated with neural network
- > More flexibility to represent local effects
- Kevin Cremanns & Dirk Roos, PI Probaligence GmbH

Examples

Samples	Kriging		ANN (Keras)	
	Training	CoP	Training	CoP
100	2 sec	99.99 %	4,5 min	99.86 %
500	3 min	99.99 %	8 min	99.93 %
2000	330 min	99.99 %	14 min	99.94 %
10000	?		68 min	99.96 %

Turbine Data

- Mass, stiffness, pressure loss and life time are given with respect to geometry parameters
- 13 parameters are considered, 176 data sets were available

Turbine Data – Rotational Stiffness

• Anisotropic kriging (Gaussian process) is optimal approximation model type

24

dynando

Turbine Data – Rotational Stiffness

Turbine Data – Rotational Stiffness

Influence of number of neurons and layers

- Two or more layers show similar behavior
- 5 to 7 neurons are most efficient
- Adjustment of optimal network architecture is problem/data dependent

Turbine Data – Rotational Stiffness

Influence of learning rate and decay

- Almost no influence
- Problem independent set up

Turbine Data – Axial Stiffness

Turbine Data – Axial Stiffness

Influence of number of neurons and layers

- Influence of layer number is smaller
- 4 to 8 neurons are most efficient
- Learning rate and decay is minor important

dynando

1.5

1

0.5

0

-0.5

-1

Load Bearing Capacity 6000 designs

• 9 input parameters with linear and nonlinear dependencies

dynando

Load Bearing Capacity

 Neural network with 3 hidden layers and 10 neurons can represent all responses very well

Polynomials

Neural Network

99.6 %

99.5 %

99.5 %

99.7 %

99.6 %

99.6 %

99.5 %

99.4 %

99.5 %

Load Bearing Capacity

Time Series Prediction

Recurrent Neural Network

Simple RNN:

Signal Approximation with Recurrent Networks

Example Lotka-Volterra

Signal Approximation with Recurrent Networks

Example Lotka-Volterra

Summary

- Deep learning library is available as additional external surrogate model in the MOP framework
- Significant speed up for large data sets compared to local models, but more flexibility and higher accuracy than polynomials
- MOP parameter reduction and optimal network design is the key for success with small data sets

For more information, please visit the Dynardo booth:

Deep Learning libraries

Custom surrogate interface

MOP framework

MOP/AMOP Post Processing

- Lars Gräning, Jonas Rotermund
- Katrin Kühn
- Ulrike Adam, Thomas Most
- Torsten Deckner, Ulrike Adam