CUNCIC presented at the 16th Weimar Optimization and Stochastic Days 2019 | Source: www.dynardo.de/en/library

Deep Gaussian Covariance Network

Machine Learning based on Probabilistic Intelligence

Kevin Cremanns¹, Can Bogoclu¹, Prof. Dr.-Ing. Dirk Roos² WOST 2019 - 06/07.06.2019

¹PI Probaligence GmbH ²Niederrhein University of Applied Sciences -IMH Institute of Modelling and High-Performance Computing R

Overview machine learning algorithms

What should a machine learning algorithm be capable of?

• Maximum flexibility

Requirements

- Maximum flexibility
- Good generalization

- Maximum flexibility
- Good generalization
- Scalability

batch size = 4

- Maximum flexibility
- Good generalization
- Scalability
- Automatic design space reduction

PAM for L = 0.99(K-fold)

PAM = Predictive accuracy of meta model

Requirements

- Maximum flexibility
- Good generalization
- Scalability
- Automatic design space reduction
- Robust against noise and outliers

Requirements

- Maximum flexibility
- Good generalization
- Scalability
- Automatic design space reduction
- Robust against noise and outliers
- Non-stationarity

- Maximum flexibility
- Good generalization
- Scalability
- Automatic design space reduction
- Robust against noise and outliers
- Non-stationarity
- Easy to use

No user settings / hyperparameters!

Deep Gaussian covariance network

Deep Gaussian covariance network - \mathcal{DGCN}

Example non-stationary length-scales

True function locally adapted

Example non-stationary length-scales

Stationary \mathcal{GP} model

Example non-stationary length-scales

Non-stationary \mathcal{DGCN} model

Stationary \mathcal{GP} with constant noise:

Non-stationary \mathcal{DGCN} with point dependent noise:

Automatic outlier avoidance with dynamic noise level (\mathcal{DGCN})

Automatic outlier avoidance with constant noise level (\mathcal{GP})

Scalability

- + \mathcal{DGCN} can use batch / online learning for high scalability.
- Training on CPU / GPU or even distributed on clusters.

Creep strain estimation (1/4) - problem description

- Creep strain of a material depends on the temperature and pressure history over time \rightarrow expensive to simulate.
- 300 simulations were used to train a *DGCN* model. This model should be utilized for probabilistic assessments with about 14,000 evaluations.
- The results of 31 finite element nodes in the rotor center over 34 time steps (1,054 outputs) should be analyzed \rightarrow correlation over space and time.

Creep strain estimation (2/4) - one example

Creep strain estimation (3/4) - visual validation

- DGCN=Deep
 Gaussian Covariance
 Network
- XGB=XGBoost
- DTR=Decision trees
- RF=Random forest
- NN=Neural network

Algorithm	MMAPE with PCA	MMAPE without PCA
\mathcal{DGCN}	1.71	
XGB	36	31
RF	289	253
DTR	396	1265
NN	218065	121321

Table 1: Comparison of \mathcal{DGCN} , neural networks (NN), random forests (RF), XGboost (XGB), decision trees (DTR) with PCA and without PCA for 21 test cases of the creep strain approximation. The mean MAPE (MMAPE) metric in [%] over all 21 multi-output sequences are estimated.

ECG anomaly detection (1/3)

ECG anomaly detection (2/3)

ECG anomaly detection (3/3)

Test data with anomaly

Bayesian optimization

The ability to adapt locally to the design space makes \mathcal{DGCN} particularly suitable for adaptive sampling methods like:

- Expected improvement (EI) for single or multi-objective optimization (not contrary).
- Expected volume improvement (EVI) for multi-objective Pareto optimization.
- Variance based global model improvement (Var).

Expected improvement

EI - Rastrigin example (1/3)

EI - Rastrigin example (2/3)

EI - Rastrigin example (3/3)

Surface based on model

EI - avoidance of unfeasible areas

Expected volume improvement

$$EI_{hyp}(\boldsymbol{x}_{*}) = \int_{\boldsymbol{y}\in\overline{HV}} I_{hyp}(\boldsymbol{x}_{*})PDF_{\boldsymbol{x}}(\boldsymbol{y})d\boldsymbol{y}\prod_{i=1}^{n_{con}}\Phi\left(rac{\hat{y}_{i*}}{\hat{s}_{i*}}
ight)$$

Expected hypervolume improvement - example

Beam example (1/3)

- \cdot 7 parameters (b_1 , b_2 , h_1 , h_2 , L, E, ho)
- \cdot 5 constraints (stress, reaction force, Eigenfrequency, Δs , m)
- \cdot 2 objectives ($\Delta s, m$)
- Solved via FEM

Beam example (2/3)

Optimization via EA (N = 10,000) on MOP / \mathcal{DGCN} models trained with 100 samples, reference EA on FEM simulation (N = 900).

Beam example (3/3)

Adaptive optimization via AMOP (N = 436) / BO+DGCN(N = 55/220), reference EA on FEM simulation (N = 900)

- Electronic chip design optimization.
- 5 optimization parameters.
- 30 dependent parameters.
- Increase cooling performance.
- Decrease pressure loss.

- Electronic chip design optimization.
- 5 optimization parameters.
- 30 dependent parameters.
- Increase cooling performance.
- Decrease pressure loss.

- Electronic chip design optimization.
- 5 optimization parameters.
- 30 dependent parameters.
- Increase cooling performance.
- Decrease pressure loss.

- Electronic chip design optimization.
- 5 optimization parameters.
- 30 dependent parameters.
- Increase cooling performance.
- Decrease pressure loss.

- Electronic chip design optimization.
- 5 optimization parameters.
- 30 dependent parameters.
- Increase cooling performance.
- Decrease pressure loss.

Reliability-based tolerance optimization of an insulin pen

- Total of 40 stochastic model parameters.
- Failure defined as higher than 1% misdosing.
- Tolerance field is to be maximized.
- Reliability-based stochastic design optimization on *DGCN*.
- 90 training samples.
- Optimization with FEM approx. 7,000 calculations.

^a70 designs with Form for validation

• (Image) Regression.

- (Image) Regression.
- (Image) Classification.

- (Image) Regression.
- (Image) Classification.
- Sequential dependent output.

- (Image) Regression.
- (Image) Classification.
- Sequential dependent output.
- Multi-output.

- (Image) Regression.
- (Image) Classification.
- Sequential dependent output.
- Multi-output.

- (Image) Regression.
- (Image) Classification.
- Sequential dependent output.
- Multi-output.
- Confidence interval of prediction.

- \cdot (Image) Regression.
- (Image) Classification.
- Sequential dependent output.
- Multi-output.
- Confidence interval of prediction.
- Gradients of prediction.

- \cdot (Image) Regression.
- (Image) Classification.
- Sequential dependent output.
- Multi-output.
- Confidence interval of prediction.
- Gradients of prediction.
- Big data (image based on a single workstation).

- \cdot (Image) Regression.
- (Image) Classification.
- Sequential dependent output.
- Multi-output.
- Confidence interval of prediction.
- Gradients of prediction.
- Big data (image based on a single workstation).
- No adjustments to be made by the user.

 Bayesian optimization (expected improvement).

- Bayesian optimization (expected improvement).
- Sensitivity analysis (even for correlated input parameters).

- Bayesian optimization (expected improvement).
- Sensitivity analysis (even for correlated input parameters).
- Adaptive sampling.

- Bayesian optimization (expected improvement).
- Sensitivity analysis (even for correlated input parameters).
- Adaptive sampling.
- Robust design optimization.

- Bayesian optimization (expected improvement).
- Sensitivity analysis (even for correlated input parameters).
- Adaptive sampling.
- Robust design optimization.
- Reliability analysis.

- Bayesian optimization (expected improvement).
- Sensitivity analysis (even for correlated input parameters).
- Adaptive sampling.
- Robust design optimization.
- Reliability analysis.
- Reliability-based robust design optimization.

Integration in optiSLang & Outlook

Integration status in optiSLang: MOP

	OP (1) - M	OP								
tabase file: Absolute path						vity (1)).omdb		🔁 👻 🖉	Open
Sett	ings Me	ssage log								
] u	se advanced	d settings								
Ad	vanced Sett	ings DGCN S	ettings	stsqs Settin	gs	Signal	MOP Settings			
Pro	perty		Value							^
	Use		🗹 Tr	Je.						
	Ore	der	2							
	Co	efficient factor	8.00							
	 Kriging 									
	Use		🗹 Tri	Je						- 11
	An	isotropic	🗌 Fa	se						
	Co	efficient factor	8.00							
	✓ Externa	II CMO								
	DG	CN		00						
	lete	05	E	se .						
	Sig	nal MOP	E Fa	se						
<.	Eiltor		. —							~
s	now postpro	cessing								
Inp	uts				Ou	tputs				
	Paramete	r Imp	ortance	^	Г		Response	Use	Minimum	Max
1	x1	Selectable			1	•	y1			
2	x2	Selectable			2	٠	y2			
	x3	Selectable			3	٠	y3			
3		Selectable								
3 4	×4									
3 4 5	x4 x5	Selectable				_			_	

Integration status in optiSLang: optimization

Optimization Wizard			
Optimization method Specify the optimization method		▲ [™]	
Analysis baba: Not set Constraints volations: Not set S	Optimisation method General transmission General tr	SQJ	BayesianOptimization
	< Back Next > Cancel	Help	

Implemented in optiSLang:

- + \mathcal{DGCN} for scalar outputs.
- Bayesian optimization (EI / EVI / Var) for scalar outputs.

Next possible steps within optiSlang:

- Support for field and sequential dependent output.
- RDO-based Bayesian optimization.

Methodological future developments in *STOCHOS*:

· Optimal control of running processes via reinforcement learning.

Kevin Cremanns info@probaligence.com

PI Probaligence GmbH