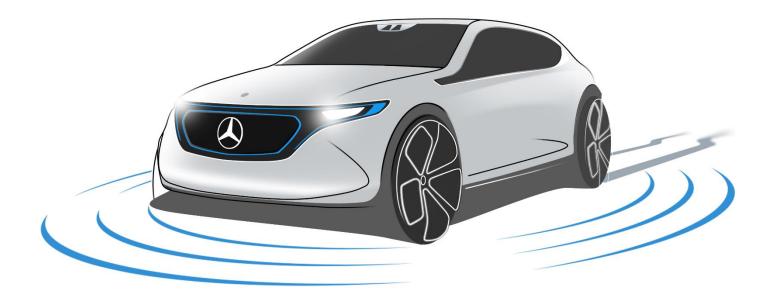


presented at the 16th Weimar Optimization and Stochastic Days 2019 | Source: www.dynardo.de/en/library



WOST 2019 -

Simulative validation of automated driver assistance

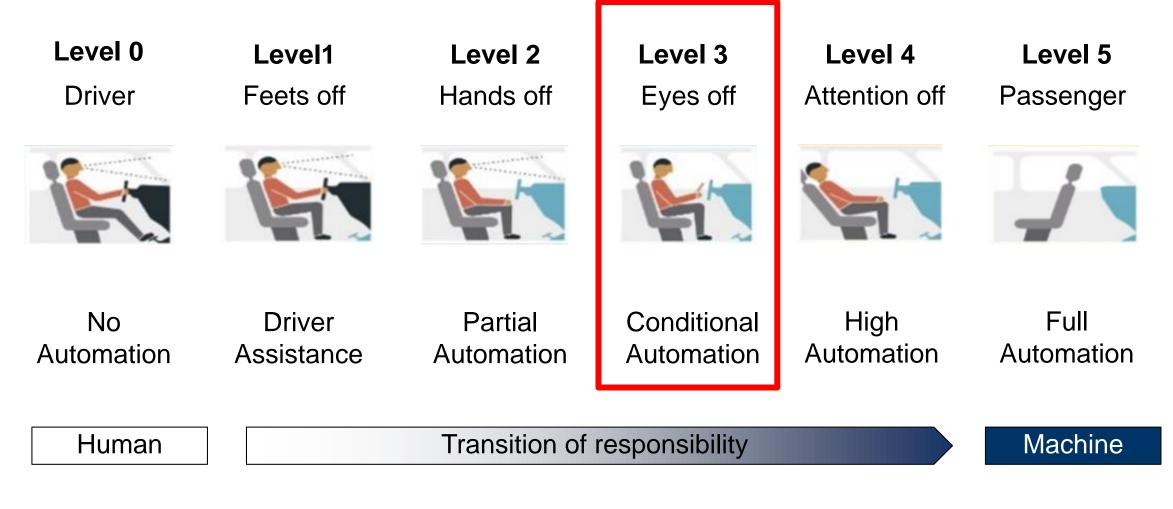
systems using reliability analysis

Maximillian Rasch, Paul Tobe Ubben (Daimler AG, Sindelfingen, Germany) Thomas Most, Veit Bayer, Roland Niemeier (Dynardo GmbH) 06.06.2019

Mercedes-Benz

Das Beste oder nichts.

Highly Automated Driving



Simulative validation of HAD

- Required mileage needed to proof the probability of failure of the system is impossible to reach in field operational tests [Winner]
- The goal of simulative validation: Find collision-relevant scenario characteristics
- The quality of validating HAD can be improved by the virtual variation of traffic scenarios

standing vehicle

no event

not simulated

- Pure simulation is not enough!
- Solution: Only critical situations are simulated

scenario (event)

simulated

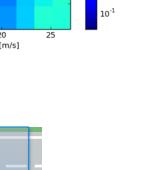
• Scenario-based approach

cut out vehicle

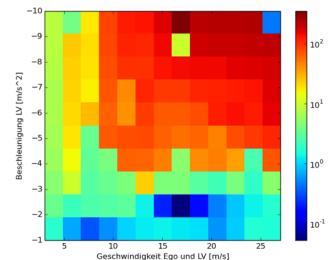
cut out vehicle

scenario (event)

simulated



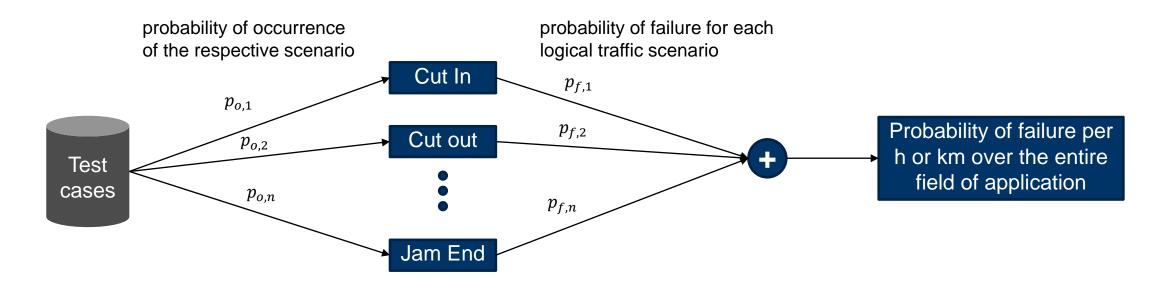
3



standing vehicle

Methodology

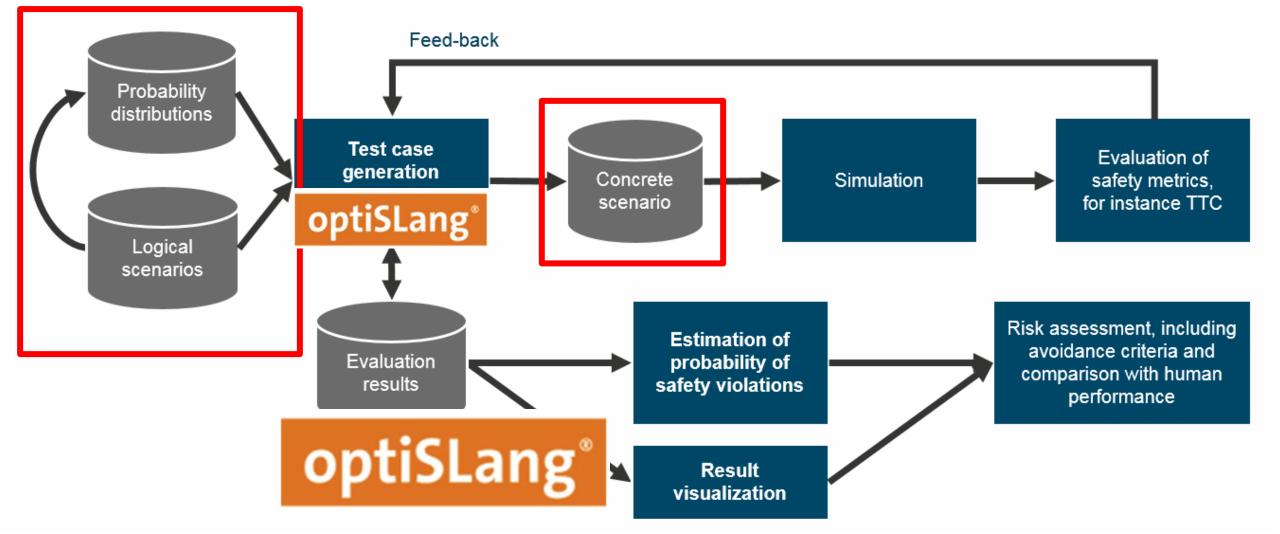
• The diversity of traffic scenarios and their probability of occurrence enables a safety assessment of the overall system for the respective scenario



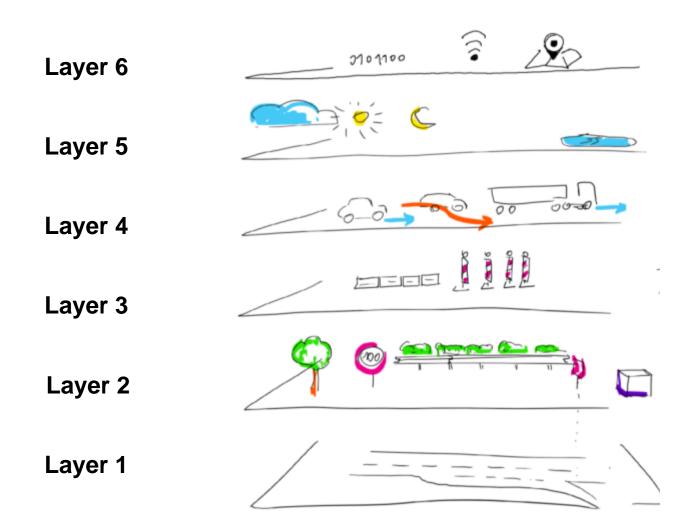
 → With the methods of the reliability analysis the probability of failure for each logical traffic scenario can be calculated

Mercedes-Benz

Simulation-based assessment of vehicle functions for logical scenarios



6-Layer model



6-layer-model to structure scenarios based on Schuldt (2017), Bagschik et al. (2018) and Bock et al. (2018)

Mercedes-Benz

Simulative validation of automated driver assistance systems using reliability analysis | Maximilian Rasch | 06.06.2019

Digital information:

e.g. V2X information on traffic signals, digital map data => Availability and quality of information communicated to own ship

Environmental conditions

Light situation, weather (rain, snow, fog...) temperature => *environmental influences on system performance*

Moving objects

Vehicles, pedestrians moving relatively to own ship => relevant traffic participants and their motion incl. dependencies

Temporal modifications and events

Road construction, lost cargo, fallen trees, dead animal => temporary objects minimizing / influencing the driving space

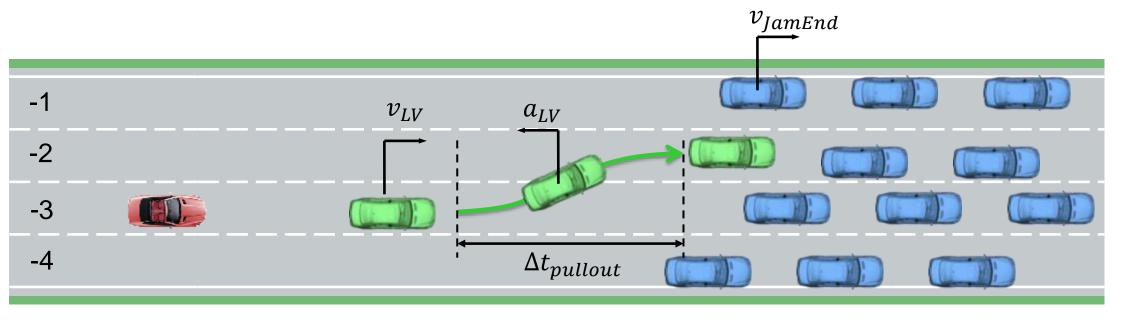
Road furniture and Rules

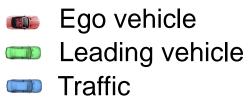
traffic signs, rail guards, lane markings, bot dots, police instructions => *including rules, where to drive how*

Road layer

road geometry. Road unevenness (openCRG), => physical description, no scenario logics

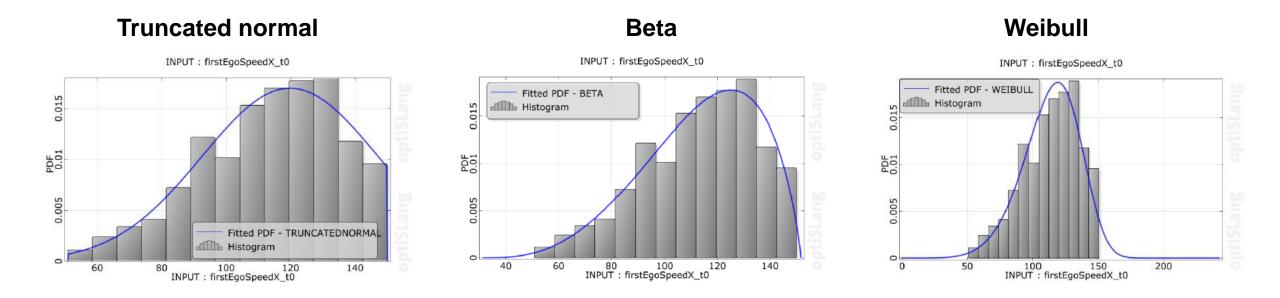
Example Scenarios with parameters





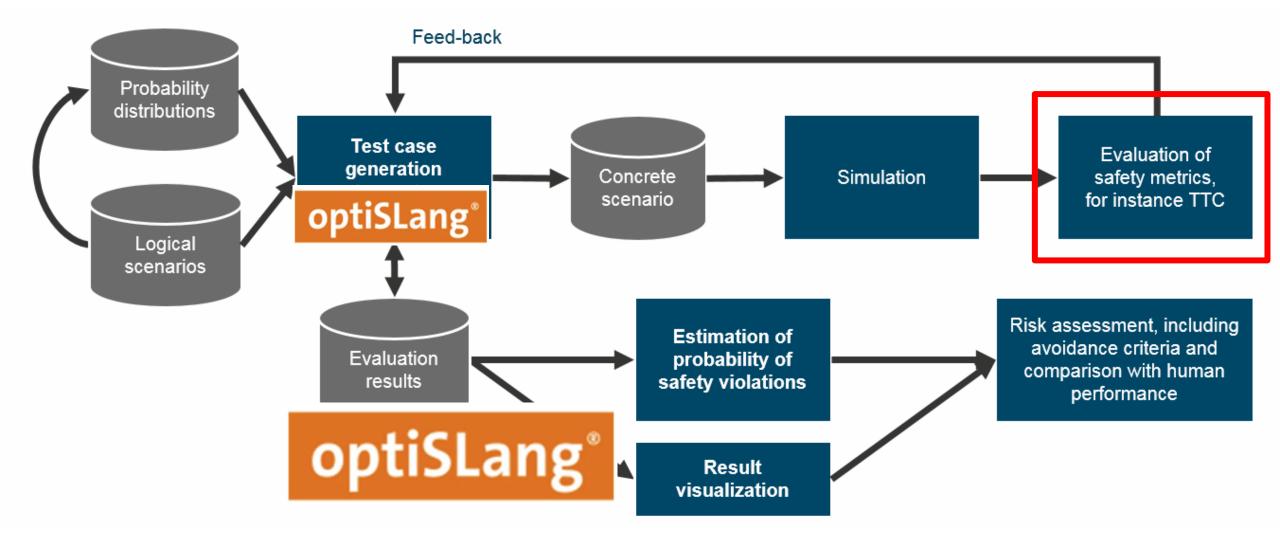
Parameter distributions

- Probability distributions determined on the basis of real measured data and by using the PEGASUS database
- Correlations between parameters have to be considered

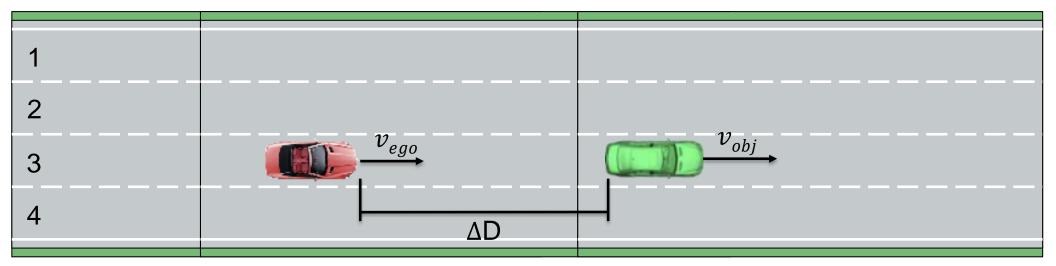


Mercedes-Benz

Simulation-based assessment of vehicle functions for logical scenarios

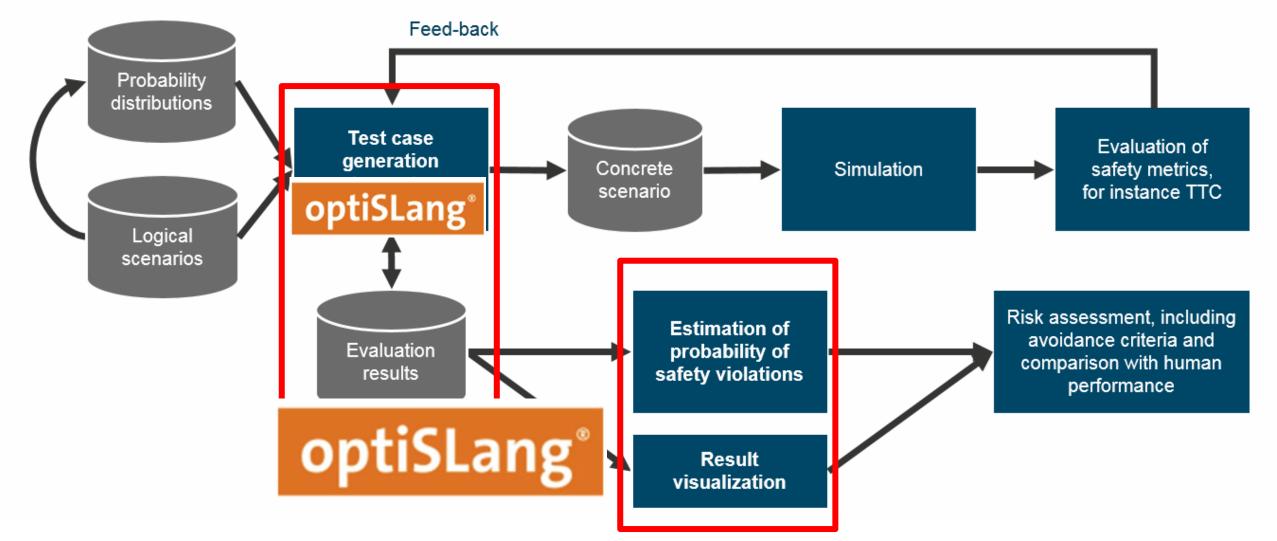


Evaluating criteria



$$TTC = \frac{\Delta D}{V_{ego} - V_{obj}} \qquad V_{coll} = V_{coll Ego} - V_{coll Obj}$$
$$THW = \frac{\Delta D}{V_{ego}} \qquad \text{alternative Criticallity} = \\ \min(\frac{TTC}{TTC_{grenz}}; \frac{THW}{THW_{grenz}}; \frac{\Delta D}{\Delta D_{grenz}}; -\frac{V_{coll}}{V_{collgrenz}})$$

Simulation-based assessment of vehicle functions for logical scenarios



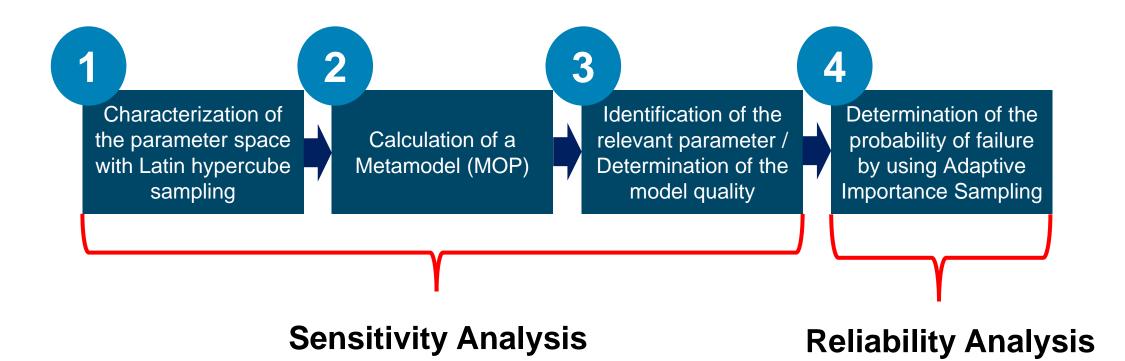
Mercedes-Benz

Challenges using Reliability Analysis for ADAS

- Very low probability of failure $\rightarrow p_f < 10^{-6}$
- Big parameter space \rightarrow more than 50 parameters possible
- No linear system \rightarrow difficult to calculate a MOP
- Limited computer power \rightarrow efficient methods
- Near realtime simulation \rightarrow efficient methods
- Discrete parameters
- Possibility of more then one failure area
- → Improved Adaptive Importance Sampling
- → Importance Sampling Using Design Points

Mercedes-Benz

Improved Adaptive Importance Sampling

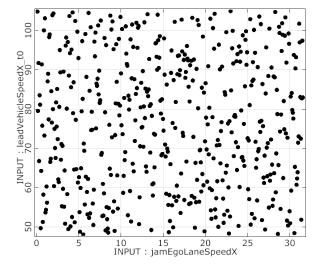


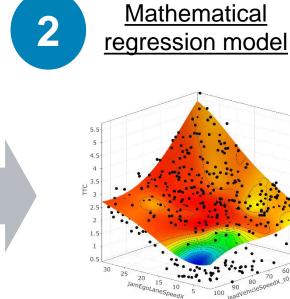
Parameter reduction by sensitivity analysis

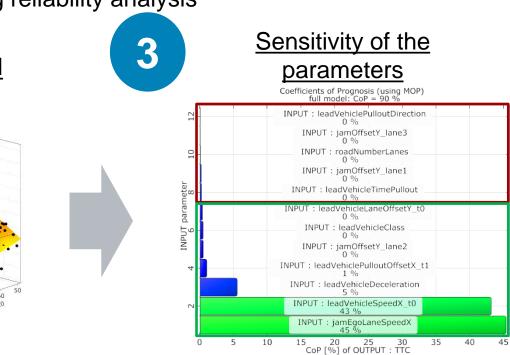
- Creating a DoE with equally distributed parameter space (500 1000 designs)
- Determine the design results through simulation
- Calculate meta-models to determine the sensitivity of the parameters
- Selection of the most sensitive parameters for the following reliability analysis

Design of Experiments

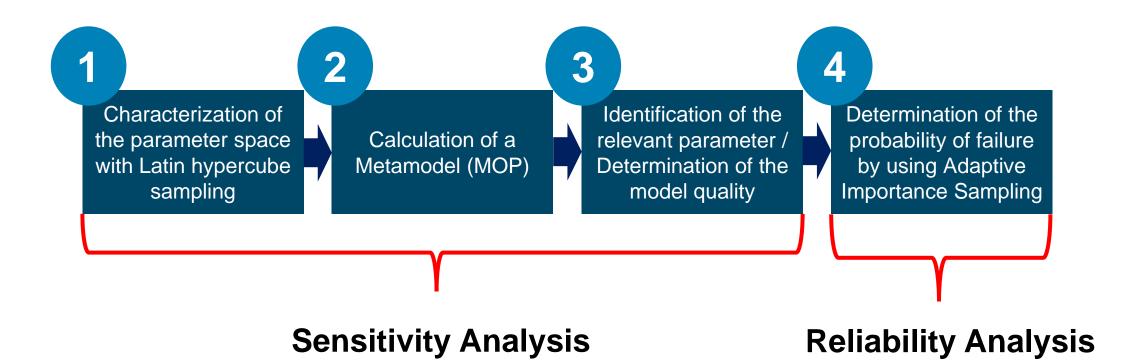
....PUT : jamEgoLaneSpeedX vs. INPUT : leadVehicleSpeedX_t0, (linear) r =0.001



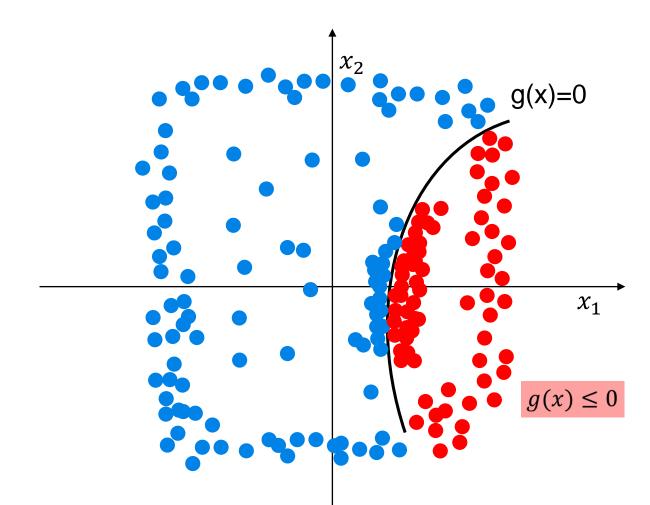




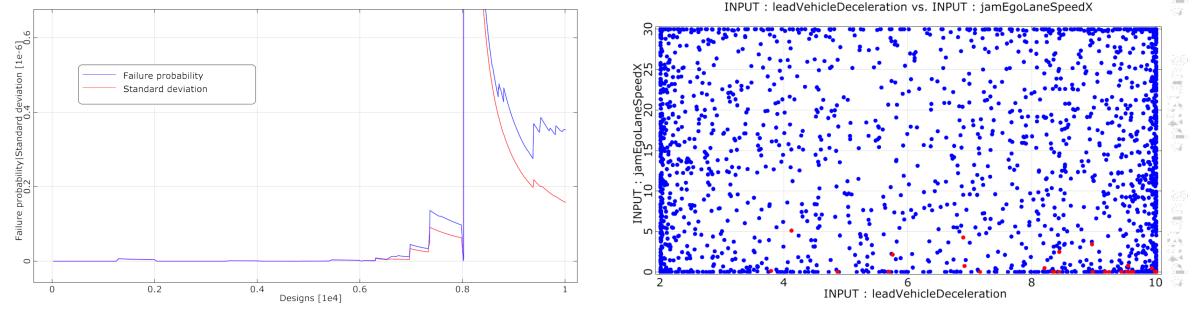
Improved Adaptive Importance Sampling



Adaptive Importance Sampling



- First iteration Monte Carlo sampling with scaling factor to place samples in the border areas
- 2. Sampling density is adapted from the found samples in the failure domain by estimating mean and covariance $E[Y] = E[X|g(X) \le 0]$ $E[YY^T] = E[XX^T|g(X) \le 0]$
- 3. A weighting function $h_Y(x)$ is formed and the new probability of failure is calculated $P_F = \frac{1}{N} \sum_{i=1}^{N} \frac{f_X(x_i)}{h_Y(x_i)} I(g(x_i))$
- 4. Steps 2 and 3 are repeated any number of times



Adaptive Sampling using jam end scenario

5 iterations à 2000 samples with 13 parameters Result history

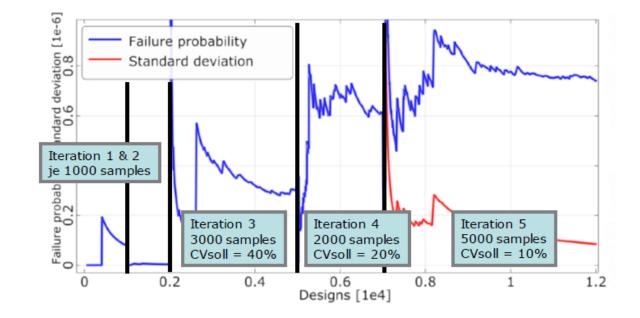
Pf= 3.5E-07, $cov(Pf) = 46\% \rightarrow too high$

 \rightarrow too few samples in the failure area

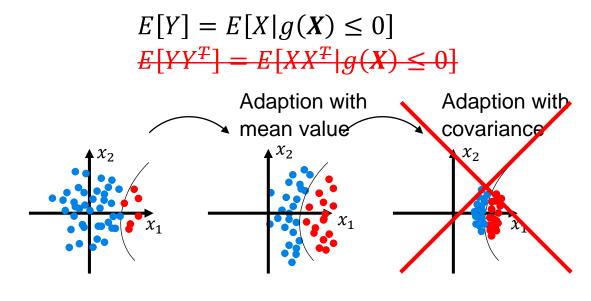
۲

Improved Adaptive Importance Sampling

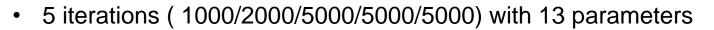
- Improvement of the Adaptive Sampling in OptiSlang
- Automatic sampling procedure that generates samples until required accuracy is achieved

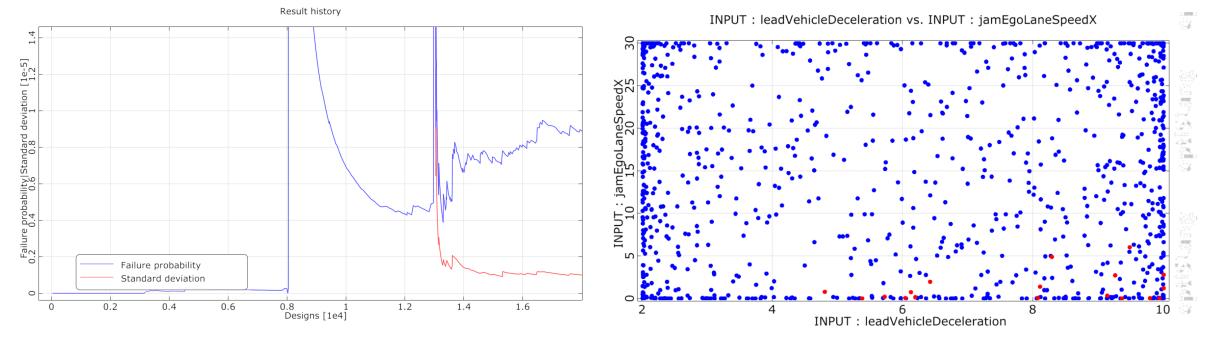


 Adaptation of the sampling density only with the mean value → Covariance is no longer considered



Improved Adaptive Importance Sampling

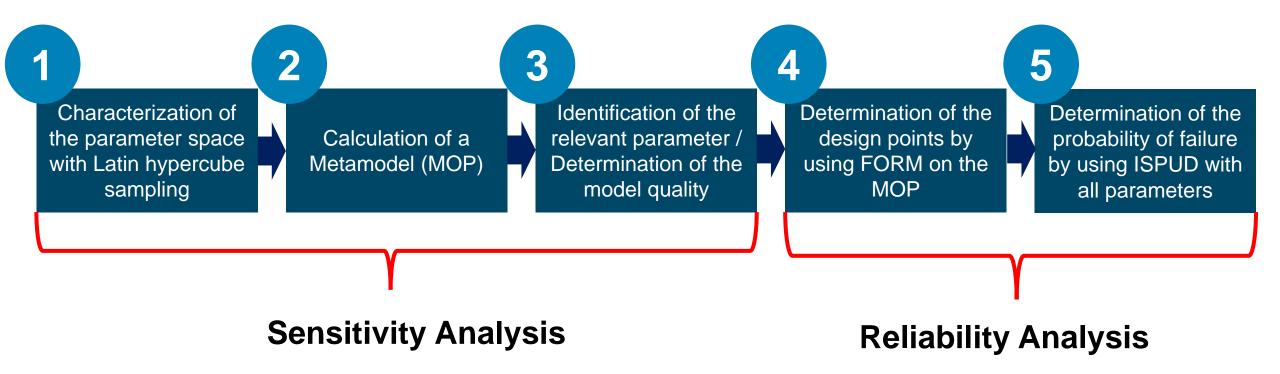




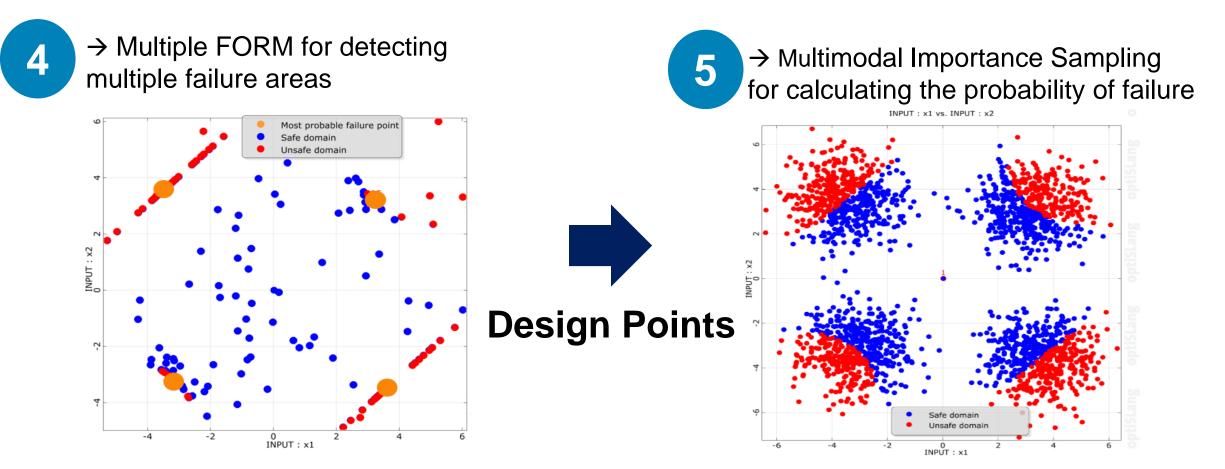
 $Pf= 8,7E-06, cov(Pf) = 11,3\% \rightarrow good accuracy$

 \rightarrow a lot of samples in the failure area

Importance Sampling using Design Points



Importance Sampling using Design Points



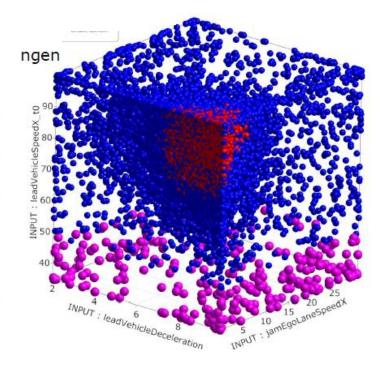
- Jam end scenario with 13 parameters
- Methods like Adapive Sampling or ISPUD can reduce the required samples

→ Reliability Analysis using meta-model

TTC = 0.4	Samples	Pf	CoV	Beta
MCS	39.420.000	2.54E-6	10.0%	4.56
AS	16.000	2.81E-6	9.1%	4.54
ISPUD+FORM	7.000+5.500	2.31E-6	9.5%	4.58

\rightarrow Reliability Analysis using the traffic simulation tool

TTC = 0.5	Samples	Pf	CoV	Beta
MCS	Not possible	-	-	-
AS	22.000	5.30E-3	9.2%	2.55
ISPUD+FORM	5.000+4.500	4.40E-3	20.1%	2.62



Thank you for your attention!

Herzlichen Dank für Ihre Aufmerksamkeit !