ifu Jena

J lena

Günter-Köhler-Institut für Fügetechnik und Werkstoffprüfung

Understanding and Optimization of ultra-short pulse laser ablation of technical ceramics based on experimental data

Maria Friedrich

WOST 2019 – Weimarer Optimierungs- und Stochastiktage

presented at the 16th Weimar Optimization and Stochastic Days 2019 | Source: www.dynardo.de/en/library

Laser processing of glass and ceramics

Outline

1. Experimental Approach

Jena

Fundamentals

Maria Friedrich

June 7, WOST 2019

ifu Jena

Maria Friedrich June 7, WOST 2019

1. Experimental Approach

Multitude of process parameters ...

Process Parameters

... results in various surface qualities

1. Experimental Approach

Process Parameters

Multi-dimensional parameter space

 \rightarrow Value ranges are unevenly distributed

- Wavelength:
- 1064 nm, 532 nm, 355 nm
- Pulse duration:
- Repetition rate:
- Max. power:

230 fs – 10 ps

25 W

< 1 MHz

Power P [W]

Fluence (Energy density) F [J/cm²]

Pulse Overlap O_h [%]

Jena

1. Experimental Approach

Procedure

Multi-dimensional parameter space

- \rightarrow Sensitivity analysis, meta model, optimization
- \rightarrow Identification of main parameters and non-linear effects

Input Parameters

DoE 1.0

- Use of widest possible parameter range within the process window of one material
- Aim: identification of main parameters

INPUTS

• Wavelength: $\lambda = 355 / 532 / 1064 \text{ nm}^{+}$

Ρ

- Focal length: f = 40 / 100 / 250 mm
- Focus diameter: $d_f = 11 \dots 110 \mu m$
- Number of Designs: 100
- Experimental Design according to native parameters

Power

Line distance a_L

Pulse distance a_P

DoE 3.0

- Restriction to a few parameters
- Aim: maximum increase of model quality, good comparability of different materials

INPUTS

- Wavelength: $\lambda = 532 \text{ nm} = \text{const.}$
- Focal length: f = 100 mm = const.
- Focus diameter: $d_f = 14 \ \mu m = const.$
- Number of Designs: 50
- Experimental Design according to derived parameters
 - Fluence
 - \succ Vertical pulse overlap O_v
 - Horizontal pulse overlap

Maria Friedrich June 7, WOST 2019

 d_{f}

 O_h

Correlation Matrix

DoE 1.0

- Use of widest possible parameter range within the process window of one material
- Aim: identification of main parameters

DoE 3.0

- Restriction to a few parameters
- Aim: maximum increase of model quality, good comparability of different materials

→ Avoidance of input correlations

ifu Jena

Anthill Plots

DoE 1.0

- Use of widest possible parameter range within the process window of one material
- Aim: identification of main parameters

Jena

DoE 3.0

- Restriction to a few parameters
- Aim: maximum increase of model quality, good comparability of different materials

DoE 1.0

- Use of widest possible parameter range within the process window of one material
- Aim: identification of main parameters

→ Good roughness model due to large value range ($Ra = 0,4 \dots 3,8 \mu m$)

DoE 3.0

- Restriction to a few parameters
- Aim: maximum increase of model quality, good comparability of different materials

ifu Jena

Coefficient of Prognosis

DoE 1.0

- Use of widest possible parameter range within the process window of one material
- Aim: identification of main parameters

→ Good roughness model due to large value range ($Ra = 0,4 \dots 3,8 \mu m$)

Jena

DoE 3.0

- Restriction to a few parameters
- Aim: maximum increase of model quality, good comparability of different materials

→ Weak roughness model ($Ra = 0,5 \dots 1,1 \mu m$) → Good models for depth-related parameters

3. Sensitivity Analysis

Ablation rate

- Ablation rate increases with power
- Line distance and pulse distance interact
 - \rightarrow High values: high speed
 - ightarrow Small values: high material removal

r_{min} ≈ 0 mm³/min

r_{max} = 7.8 mm³/min

ifu Jena

3. Sensitivity Analysis

Roughness

- Optimal pulse overlap depends on fluence
- With increasing fluence: minimum shifts to smaller values

ifu Jena

3. Sensitivity Analysis

Different materials

- Transfer of DoE 3.0 to other materials (LTCC, AIN, Porcelain)
- Use of "Space filling Latin Hypercube Sampling"

ifu Jena

4. Industrial Applications

- Microsystems technology: fabrication of precise cavities in Al₂O₃ / LTCC for the positioning of microchips:
 - \circ ~ Profile depth: 800 μm
 - Bottom: 5 x 5 mm²
 - Flank angle: 30°

• High-value consumer goods: manufacturing of individual design structures in porcelain: Example: "Zugspitze" ($\Delta X = 25 \text{ mm}$, $\Delta Z = 2,1 \text{ mm}$)

Stack of 100 layers

Ablation of negative volume

3D freeform profile

lena

Summary

- optiSLang can be used to create physically meaningful metamodels based on experimental data
- The further development of the DoE (symmetrical parameter space, restriction to a few parameters) increased the model quality
- For a comprehensive understanding of the process, all models should be considered
 - DoE 1.0: Knowledge about whole parameter space
 - DoE 3.0: Comparison of different materials
- Native and derived parameters must be considered separately, but both provide important insights
 - > Native parameters: depth-related outputs, focus diameter
 - Derived parameters: roughness-related outputs
- General question: What knowledge would you like to achieve?
 - Reduce the experimental design to provide additional insights!

ifu Jena

ifu Jena

Günter-Köhler-Institut für Fügetechnik und Werkstoffprüfung

M. Eng. Maria Friedrich

ifw - Günter-Köhler-Institut für Fügetechnik und Werkstoffprüfung GmbH Otto-Schott-Str. 13 07745 Jena

- Phone: +49 (0) 3641 204 190
- E-Mail: mfriedrich@ifw-jena.de

www.ifw-jena.de

The project "ProFunK" has been supported by the free state of *Thuringia* (2015 VF0021). A cofinancing was carried out by the *Europäischer Fonds für regionale Entwicklung (EFRE).* This support is gratefully acknowledged.

A member of Pankl-SHW Industries AG

VIAELECTRONIC

University of Applied Sciences

Ernst-Abbe-Hochschule Jena

