

presented at the 16th Weimar Optimization and Stochastic Days 2019 | Source: www.dynardo.de/en/library

LIGHTTRANS -

WOST, Weimar

Design and Optimization Strategy of Coupling Gratings for Near-Eye Displays

Roberto Knoth¹, Stefan Steiner¹, Site Zhang¹, Christian Hellmann³, and Frank Wyrowski²

- ¹ LightTrans International UG, Jena, Germany
- ²Applied Computational Optics Group, Friedrich-Schiller-Universität Jena, Germany
- ³ Wyrowski Photonics GmbH, Jena, Germany

Jena, Germany

LightTrans International

Tim Cook on Augmented Reality

MASHABLE, OCT 04, 2016

https://mashable.com/2016/10/03/tim-cook-augmented-reality/

"AR I think is going to become

really big," said Cook. "VR, I think, is not gonna be that big, compared to AR ... How long will it take? AR gonna take a little while, because there's some really hard technology challenges there. But it will happen. It will happen in a big way. And we will wonder, when it does [happen], how we lived without it. Kind of how we wonder how we lived without our [smartphones] today."

Tim Cook on AR Glasses

Independent, 10 October 2017

https://www.independent.co.uk/life-style/gadgets-and-tech/features/

- "But today I can tell you the technology itself doesn't exist to do that in a quality way. The display technology required, as well as putting enough stuff around your face – there's huge challenges with that."
- "The field of view, the quality of the display itself, it's not there yet," he says. And as with all of its products, Apple will only ship something if it feels it can do it "in a quality way".

Typical Imaging Unit

Typical Additions to Basic Setup

Redirection & Light Path Extension

Redirection & Light Path Extension

Non-Sequential Light Propagation

Lightguide Coupling Approach

Lightguide Coupling Approach

set of plane waves

- field of view (-15..15, -10..10)°
- wavelength 532nm
- linearly polarized along x-axis

Workflow:

- 1. Determination of the grating vector (period and orientation) to fulfill the guiding condition of lightguides
- 2. Designing the structure profile of the incoupling grating by an optimization approach

Lightguide Coupling Approach

set of plane waves

- field of view (-15..15, -10..10)°
- wavelength 532nm
- linearly polarized along x-axis

Workflow:

- 1. Determination of the grating vector (period and orientation) to fulfill the guiding condition of lightguides
- 2. Designing the structure profile of the incoupling grating by an optimization approach

Mathematical Modeling: Direction Vector and *k*-Domain

- Field of View (FOV) angles denoted by the Cartesian angles θ_x and $\theta_y.$
- This defines a unit direction vector according to

$$\hat{\boldsymbol{s}} \stackrel{\text{def}}{=} \frac{\left(\tan\theta_x, \tan\theta_y, 1\right)}{\sqrt{1 + \tan^2\theta_x + \tan^2\theta_y}}$$

• The vector k of a plane wave is defined by

$$\boldsymbol{k}=k_0n\hat{\boldsymbol{s}},$$

with $k_0 = 2\pi/\lambda$ and the refractive index n of the medium in which we consider the wave.

Mathematical Modeling: k-Domain Consideration

Mathematical Modeling: Propagating Mode Condition

Mathematical Modeling: TIR Condition

Mathematical Modeling: Guiding Condition

Lightguide Coupling by Gratings

A grating is an elegant component for the coupling because the FOV is shifted in the k-domain under consideration of the grating vector G.

 $k_0 n^{\lg} \ge \left| \boldsymbol{\kappa}^{\operatorname{in}} + \boldsymbol{m} \, \boldsymbol{G} \right| \ge k_0 n^{\operatorname{air}}$

In general, the 2D-periodic grating vector has two components

 $oldsymbol{G} = (rac{2\pi}{p_x}, rac{2\pi}{p_y})^T$

with period along the x- and y-axis (p_x, p_y) and the diffraction order $\boldsymbol{m} = (m_x, m_y)^T$.

Period Calculation According to Guiding Condition

- In case of 1D-periodic gratings one component of the grating vector becomes zero, so that $G_y = 0$ without loosing of generality.
- From that follows the range of the period of a 1Dperiodic grating geometry to couple a certain FOV into a lightguide:

$$\frac{2\pi}{\sqrt{(k_0 n^{\mathrm{air}})^2 - (k_y^{\mathrm{in}})^2} - k_x^{\mathrm{in}}} \ge p \ge \frac{2\pi}{\sqrt{(k_0 n^{\mathrm{lg}})^2 - (k_y^{\mathrm{in}})^2} - k_x^{\mathrm{in}}}$$

Optimization Task

Workflow:

- 1. Determination of the grating vector (period and orientation) to fulfill the guiding condition of lightguides
- 2. Designing the structure profile of the incoupling grating by an optimization approach

set of plane waves

- field of view (-15..15, -10..10)°
- wavelength 532nm
- linearly polarized along x-axis

Simulation Results and Configuration of the Merit Function

WYROWSKI

Virtual Labrusion

FAST PHYSICAL OPTICS SOFTWAR

Inputs

- variation of the fill factor c/p with the
 slit width c and the period p
 > 0.1% to 99.9%
- variation of the modulation depth h
 50 nm to 1500 nm

Initial Configuration of Grating	
fill factor	50.00%
modulation depth	400.00nm
period	410nm
operating order	1 st transmitted

Optimization Workflow

- the following optimization workflow is applied to design a binary grating for efficient lightguide coupling:
 - 1. Define the inputs and their ranges, start with a reference input combination
 - 2. Perform the optimization with several simulations
 - 3. Calculate the corresponding outputs
 - 4. Evaluation of the defined objectives
 - 5. Next iteration with new inputs
- the optimization algorithm stops after certain iterations and/ or when no more improvement of the objectives can be achieved

Optimization Results of optiSLang

- the optimization results are plotted as a function of the merit functions
 - mean efficiency
 - uniformity contrast
- the Pareto front indicates the optimum compromise between the two merit functions (highlighted)
- any optimization result at the pareto front might selected depending on the needs of the optical designer

Advanced Evaluation of the Optimization Results

- furthermore, the same colors are visualized on the Pareto front (2) to visualize the clusters (here: the impact of the slit width on both objectives)
- therefrom, the optical designer is able to select a robust design with the best compromise between the input parameters and the output parameters

optiSLang

- for a better understanding how the input parameters are correlated to the output parameters, the Pareto front designs are visualized in a *Parallel Coordinates Plot* (1)
- in addition, a cluster analysis is performed to group a specific parameter (e.g. relative slit width) into colored clusters for highlighting the relationship of the input parameters to the output parameters
- for example, a low modulation depth and a low relative slit width (red cluster) lead to the best uniformity contrasts but to poor mean efficiencies on the other side

Advanced Evaluation of the Optimization Results

- as a result, a design is selected, which is the best compromise for a prioritized low uniformity contrast and an acceptable mean efficiency including manufacturable grating parameters
- the *Parallel Coordinates Plot* illustrates the corresponding input parameter combination for this design (black curve)

Analysis of Coupling Efficiency for Optimization Result

- finally, the optimization result is analyzed regarding the coupling efficiency using the software VirtualLab Fusion
- as a result, the uniformity contrast was significantly reduced but to the cost of the entire efficiency

Optimization Task

Workflow:

- 1. Determination of the grating vector (period and orientation) to fulfill the guiding condition of lightguides
- 2. Designing the structure profile of the incoupling grating by an optimization approach

set of plane waves

- field of view (-30..30, -15..15)°
- wavelength 532nm
- linearly polarized along x-axis

Optimization Result of optiSLang

- an evolutionary ٠ optimization algorithm is applied using the optimization software optiSLang
- the additional freedom of the slant angle provides additional solutions

optiSLang

Analysis of Coupling Efficiency for Optimization Results

www.LightTrans.com

Conclusion

Thank you for your attention!